Abstract

We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorecence microscopy induced by mismatches in refractive index," J. Microsc. (Oxford) 169, 391-405 (1993).
    [CrossRef]
  3. H. Felgner, O. Muller, and M. Schliwa, "Calibration of light forces in optical tweezers," Appl. Opt. 34, 977-982 (1995).
    [CrossRef] [PubMed]
  4. M. J. Booth, M. A. A. Neil, and T. Wilson, "Aberration correction for confocal imaging in refratcive-index mismatched media," J. Microsc. (Oxford) 192, 90-98 (1998).
    [CrossRef]
  5. T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003).
    [CrossRef]
  6. K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, "Measurement of the effective focal shift in an optical trap," Opt. Let. 30, 1318-1320 (2005).
    [CrossRef]
  7. E. Fällman and O. Axner, "Influence of the glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical twezers," Appl. Opt. 42, 3915-3926 (2003).
    [CrossRef] [PubMed]
  8. D. Ganic, X. Gan, and M. Gu, "Exact radiation trapping force calculation based on vectorial diffraction theory," Opt. Express 12, 2670-2675 (2004).
    [CrossRef] [PubMed]
  9. P. C. Ke and M. Gu, "Characterization of trapping force in the presence of spherical aberration," J. Mod. Opt. 45, 2159-2168 (1998).
    [CrossRef]
  10. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
    [CrossRef]
  11. J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
    [CrossRef]
  12. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005).
    [CrossRef] [PubMed]
  13. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instrum. 69, 1974-1977 (1998).
    [CrossRef]
  14. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
    [CrossRef]
  15. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multifunctional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
    [CrossRef]
  16. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
    [CrossRef]
  17. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  18. D. G. Grier, "A revolution in optical manipulation," Nature (London) 424, 810-816 (2003).
    [CrossRef] [PubMed]
  19. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980), Chap. 9, Table XXII, p. 470.
  20. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer-generated holograms," J. Mod. Opt. 42, 217-223 (1995).
    [CrossRef]
  21. N. B. Simpson, L. Allen, and M. J. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
    [CrossRef]
  22. K. T. Gahagan and G. A. Swartzlander, "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996).
    [CrossRef] [PubMed]
  23. J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90, 133901 (2003).
    [CrossRef] [PubMed]
  24. S. Sundbeck, I. Gruzberg, and D. G. Grier, "Structure and scaling of helical modes of light," Opt. Lett. 30, 477-479 (2005).
    [CrossRef] [PubMed]
  25. J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003).
    [CrossRef] [PubMed]
  26. E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic coupling of two Brownian spheres to a planar surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
    [CrossRef] [PubMed]

2005 (3)

2004 (2)

D. Ganic, X. Gan, and M. Gu, "Exact radiation trapping force calculation based on vectorial diffraction theory," Opt. Express 12, 2670-2675 (2004).
[CrossRef] [PubMed]

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

2003 (5)

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

D. G. Grier, "A revolution in optical manipulation," Nature (London) 424, 810-816 (2003).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003).
[CrossRef] [PubMed]

E. Fällman and O. Axner, "Influence of the glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical twezers," Appl. Opt. 42, 3915-3926 (2003).
[CrossRef] [PubMed]

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

2001 (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

2000 (2)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multifunctional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic coupling of two Brownian spheres to a planar surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (3)

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, "Aberration correction for confocal imaging in refratcive-index mismatched media," J. Microsc. (Oxford) 192, 90-98 (1998).
[CrossRef]

P. C. Ke and M. Gu, "Characterization of trapping force in the presence of spherical aberration," J. Mod. Opt. 45, 2159-2168 (1998).
[CrossRef]

1996 (3)

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

N. B. Simpson, L. Allen, and M. J. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

K. T. Gahagan and G. A. Swartzlander, "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996).
[CrossRef] [PubMed]

1995 (2)

H. Felgner, O. Muller, and M. Schliwa, "Calibration of light forces in optical tweezers," Appl. Opt. 34, 977-982 (1995).
[CrossRef] [PubMed]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer-generated holograms," J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

1993 (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorecence microscopy induced by mismatches in refractive index," J. Microsc. (Oxford) 169, 391-405 (1993).
[CrossRef]

1986 (1)

1980 (1)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980), Chap. 9, Table XXII, p. 470.

Abbondanzieri, E. A.

K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, "Measurement of the effective focal shift in an optical trap," Opt. Let. 30, 1318-1320 (2005).
[CrossRef]

Allen, L.

N. B. Simpson, L. Allen, and M. J. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

Arlt, J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Ashkin, A.

Axner, O.

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, "Measurement of the effective focal shift in an optical trap," Opt. Let. 30, 1318-1320 (2005).
[CrossRef]

Booth, M. J.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, "Aberration correction for confocal imaging in refratcive-index mismatched media," J. Microsc. (Oxford) 192, 90-98 (1998).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980), Chap. 9, Table XXII, p. 470.

Brenner, M. P.

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic coupling of two Brownian spheres to a planar surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Chu, S.

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorecence microscopy induced by mismatches in refractive index," J. Microsc. (Oxford) 169, 391-405 (1993).
[CrossRef]

Crocker, J. C.

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

Curtis, J. E.

J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic coupling of two Brownian spheres to a planar surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Dziedzic, J. M.

Fällman, E.

Felgner, H.

Gahagan, K. T.

Gan, X.

Ganic, D.

Grier, D. G.

M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005).
[CrossRef] [PubMed]

S. Sundbeck, I. Gruzberg, and D. G. Grier, "Structure and scaling of helical modes of light," Opt. Lett. 30, 477-479 (2005).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003).
[CrossRef] [PubMed]

J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

D. G. Grier, "A revolution in optical manipulation," Nature (London) 424, 810-816 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic coupling of two Brownian spheres to a planar surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

Gruzberg, I.

Gu, M.

D. Ganic, X. Gan, and M. Gu, "Exact radiation trapping force calculation based on vectorial diffraction theory," Opt. Express 12, 2670-2675 (2004).
[CrossRef] [PubMed]

P. C. Ke and M. Gu, "Characterization of trapping force in the presence of spherical aberration," J. Mod. Opt. 45, 2159-2168 (1998).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multifunctional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
[CrossRef]

He, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer-generated holograms," J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

Heckenberg, N. R.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer-generated holograms," J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorecence microscopy induced by mismatches in refractive index," J. Microsc. (Oxford) 169, 391-405 (1993).
[CrossRef]

Hossack, W. J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Juskaitis, R.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Kawata, S.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Ke, P. C.

P. C. Ke and M. Gu, "Characterization of trapping force in the presence of spherical aberration," J. Mod. Opt. 45, 2159-2168 (1998).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Ladavac, K.

Lee, S.-H.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multifunctional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Muller, O.

Neil, M. A. A.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, "Aberration correction for confocal imaging in refratcive-index mismatched media," J. Microsc. (Oxford) 192, 90-98 (1998).
[CrossRef]

Neuman, K. C.

K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, "Measurement of the effective focal shift in an optical trap," Opt. Let. 30, 1318-1320 (2005).
[CrossRef]

Ota, T.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Padgett, M. J.

N. B. Simpson, L. Allen, and M. J. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

Polin, M.

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multifunctional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
[CrossRef]

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorecence microscopy induced by mismatches in refractive index," J. Microsc. (Oxford) 169, 391-405 (1993).
[CrossRef]

Roichman, Y.

Rubinsztein-Dunlop, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer-generated holograms," J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

Schliwa, M.

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Simpson, N. B.

N. B. Simpson, L. Allen, and M. J. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Squires, T. M.

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic coupling of two Brownian spheres to a planar surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorecence microscopy induced by mismatches in refractive index," J. Microsc. (Oxford) 169, 391-405 (1993).
[CrossRef]

Sugiura, T.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Sundbeck, S.

Swartzlander, G. A.

Theofanidou, E.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multifunctional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
[CrossRef]

Wagemann, E. U.

Wilson, L.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Wilson, T.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, "Aberration correction for confocal imaging in refratcive-index mismatched media," J. Microsc. (Oxford) 192, 90-98 (1998).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980), Chap. 9, Table XXII, p. 470.

Appl. Opt. (2)

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

J. Microsc. (2)

M. J. Booth, M. A. A. Neil, and T. Wilson, "Aberration correction for confocal imaging in refratcive-index mismatched media," J. Microsc. (Oxford) 192, 90-98 (1998).
[CrossRef]

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorecence microscopy induced by mismatches in refractive index," J. Microsc. (Oxford) 169, 391-405 (1993).
[CrossRef]

J. Mod. Opt. (3)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer-generated holograms," J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

N. B. Simpson, L. Allen, and M. J. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

P. C. Ke and M. Gu, "Characterization of trapping force in the presence of spherical aberration," J. Mod. Opt. 45, 2159-2168 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Nature (1)

D. G. Grier, "A revolution in optical manipulation," Nature (London) 424, 810-816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (3)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multifunctional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Opt. Express (2)

Opt. Let. (1)

K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, "Measurement of the effective focal shift in an optical trap," Opt. Let. 30, 1318-1320 (2005).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (2)

J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90, 133901 (2003).
[CrossRef] [PubMed]

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic coupling of two Brownian spheres to a planar surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980), Chap. 9, Table XXII, p. 470.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Schematic implementation of dynamic holographic optical tweezers with imposed aberrations. A computer-generated hologram φ(ρ) encoding a 4 × 4 pattern of optical tweezers is distorted by the phase function φ1(ρ) encoding a geometric aberration, in this case coma, before being imposed on a Gaussian laser beam with a SLM. Particles trapped in the array are imaged with a CCD camera.

Fig. 2
Fig. 2

(Color online) Effect of coma:(a) Intensity profiles of severely comatic optical tweezers (a 2 = 20) at several heights relative to the focal plane. (b) Average trap stiffness in the and ŷ directions of 16 holographic optical traps as a function of coma. The inset shows a single particle's trajectory in a comatic optical tweezer at a 2 = 20. Coma clearly distorts the intensity profile of optical vortices with topological charge, = 80, in (c) a 2 = −20, (d) a 2 = 0, and (e) a 2 = 20.

Fig. 3
Fig. 3

(Color online) Effect of astigmatism:(a) The intensity profile of an astigmatic beam (a 3 = 20) at 10 axial positions relative to the focal plane. (b) Average stiffness in the and the ŷ directions of 16 holographic optical traps as a function of the imposed astigmatism. The inset shows a typical single-particle trajectory at a 3 = 20. The presence of astigmatism is readily discerned in the structure of optical vortices, as demonstrated for (c) a 3 = −20, (d) a 3 = 0, and (e) a 3 = 20.

Fig. 4
Fig. 4

(Color online) Effect of spherical aberration. The average trap stiffness in the and the ŷ directions of 16 holographic optical traps as a function of the imposed spherical aberration.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

φ 1 ( ρ ) = a 1 2 ( 6 x 4 6 x 2 + 1 ) spherical aberration,
φ 2 ( ρ ) = a 2 ( 3 x 3 2 x ) cos ( θ θ 2 ) coma ,
φ 3 ( ρ ) = a 3 x 2 [ 2 cos 2 ( θ θ 3 ) 1 ] astigmatism,
φ 4 ( ρ ) = a 4 2 ( 2 x 2 1 ) curvature of field,
φ 5 ( ρ ) = a 5 x cos ( θ θ 5 ) distortion,
u ( r ) = ( k x x 2 + k y y 2 ) ,
k i = 1 c i , 0 + A i Δ r 2 ,
γ i = 1 c i , 0 ln ( c i , 1 c i , 0 ) + [ A i ln ( c i , 1 c i , 0 ) + B i ] Δ r 2 ,
A i = c i , 0 4 2 c i , 0 2 c i , 1 2 3 c i , 1 4 + 2 c i , 0 c i ,1 2 c i , 2 ( c i , 0 3 c i , 0 c i , 1 2 ) 2 ,
B i = c i , 0 2 c i , 1 2 + c i , 0 c i , 2 c i , 0 2 ( c i , 0 2 c i , 1 2 ) ,
c i , n = 1 N n j = 0 N 1 n r i ( j Δ t ) r i [ ( j + n ) Δ t ]

Metrics