Abstract

We develop an adaptive-optics system based on a Mach–Zehnder radial shearing interferometer with liquid-crystal-device (LCD) phase-shift interferometry (PSI). Using accurate phase calibration and transient nematic driving of the LCD, the developed three-step PSI procedure can be achieved in a time of 5  ms. The proposed Mach–Zehnder radial shearing PSI method reconstructs the phase information using a digital signal processor (DSP). The DSP then computes appropriate control signals to drive a deformable mirror in such a way as to eliminate the wavefront distortion. The current adaptive-optics system is capable of suppressing low-frequency thermal disturbances with a signal-to-noise ratio improvement of more than 20  dB and a steady-state phase error of less than 0.02π root mean square when the control loop is operated at a frequency of 30  Hz.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).
  2. N. Hubin and L. Noethe, "Active optics, adaptive optics, and laser guide stars," Science 262, 1390-1394 (1993).
  3. P. Kern, "Adaptive optics prototype system for infrared astronomy. I. System description," in Adaptive Optics and Optical Structures, J.J.Schulte-in-den-Baeumen and R.K.Tyson, eds., Proc. SPIE 1271, 243-251 (1990).
  4. A. Greenaway and J. Burnett, Industrial and Medical Applications of Adaptive Optics (IOP, 2004).
  5. R. K. Tyson, "Bit-error rate for free-space adaptive optics laser communications," J. Opt. Soc. Am. A 19, 753-758 (2002).
  6. J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).
  7. M. A. Vorontsov and G. W. Carhart, "Adaptive phase-distortion correction based on parallel gradient-descent optimization," Opt. Lett. 22, 907-909 (1997).
  8. T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, "Microelectromechanical deformable mirrors," IEEE J. Quantum Electron. 5, 83-89 (1999).
    [CrossRef]
  9. M. Horenstein, T. Bifano, R. K. Mali, and N. Vandelli, "Electrostatic effects in micromachined actuators for adaptive optics," J. Electrostat. 42, 1-2 (1997).
    [CrossRef]
  10. H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, "Phase-shifting point diffraction interferometer," Opt. Lett. 21, 1526-1528 (1996).
  11. T. Shirai, "Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging," Appl. Opt. 41, 4013-4023 (2002).
  12. D. C. L. Cheung, T. H. Barnes, A. R. D. Somervell, and T. G. Haskell, "Aberration correction using a multi-segment mirror with feedback interferometry," Opt. Laser Technol. 41, 113-125 (2004).
  13. D. C. L. Cheung, T. H. Barnes, and T. G. Haskell, "Feedback interferometry with membrane mirror for adaptive optics," Opt. Commun. 218, 33-41 (2003).
    [CrossRef]
  14. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).
  15. D. W. Griffin, "Phase-shifting shearing interferometer," Opt. Lett. 26, 140-141 (2001).
  16. Y.-Y. Cheng and J. C. Wyant, "Phase shifter calibration in phase-shifting interferometry," Appl. Opt. 24, 3049-3052 (1985).
  17. K.-H. Chang, A.-C. Hsu, and J.-L. Chern, "Comment on phase-shifting shearing interferometer," Opt. Lett. 27, 509-510 (2002).
  18. J. Herrmann, "Phase variance and Strehl ratio in adaptive optics," J. Opt. Soc. Am. A 9, 2257-2258 (1992).

2006 (1)

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).

2004 (2)

A. Greenaway and J. Burnett, Industrial and Medical Applications of Adaptive Optics (IOP, 2004).

D. C. L. Cheung, T. H. Barnes, A. R. D. Somervell, and T. G. Haskell, "Aberration correction using a multi-segment mirror with feedback interferometry," Opt. Laser Technol. 41, 113-125 (2004).

2003 (1)

D. C. L. Cheung, T. H. Barnes, and T. G. Haskell, "Feedback interferometry with membrane mirror for adaptive optics," Opt. Commun. 218, 33-41 (2003).
[CrossRef]

2002 (3)

2001 (1)

1999 (1)

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, "Microelectromechanical deformable mirrors," IEEE J. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

1998 (2)

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).

1997 (2)

M. Horenstein, T. Bifano, R. K. Mali, and N. Vandelli, "Electrostatic effects in micromachined actuators for adaptive optics," J. Electrostat. 42, 1-2 (1997).
[CrossRef]

M. A. Vorontsov and G. W. Carhart, "Adaptive phase-distortion correction based on parallel gradient-descent optimization," Opt. Lett. 22, 907-909 (1997).

1996 (1)

1993 (1)

N. Hubin and L. Noethe, "Active optics, adaptive optics, and laser guide stars," Science 262, 1390-1394 (1993).

1992 (1)

1990 (1)

P. Kern, "Adaptive optics prototype system for infrared astronomy. I. System description," in Adaptive Optics and Optical Structures, J.J.Schulte-in-den-Baeumen and R.K.Tyson, eds., Proc. SPIE 1271, 243-251 (1990).

1985 (1)

Awwal, A. A. S.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).

Barnes, T. H.

D. C. L. Cheung, T. H. Barnes, A. R. D. Somervell, and T. G. Haskell, "Aberration correction using a multi-segment mirror with feedback interferometry," Opt. Laser Technol. 41, 113-125 (2004).

D. C. L. Cheung, T. H. Barnes, and T. G. Haskell, "Feedback interferometry with membrane mirror for adaptive optics," Opt. Commun. 218, 33-41 (2003).
[CrossRef]

Bifano, T.

M. Horenstein, T. Bifano, R. K. Mali, and N. Vandelli, "Electrostatic effects in micromachined actuators for adaptive optics," J. Electrostat. 42, 1-2 (1997).
[CrossRef]

Bifano, T. G.

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, "Microelectromechanical deformable mirrors," IEEE J. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

Bokor, J.

Burnett, J.

A. Greenaway and J. Burnett, Industrial and Medical Applications of Adaptive Optics (IOP, 2004).

Carhart, G. W.

Chang, K.-H.

Cheng, Y.-Y.

Chern, J.-L.

Cheung, D. C. L.

D. C. L. Cheung, T. H. Barnes, A. R. D. Somervell, and T. G. Haskell, "Aberration correction using a multi-segment mirror with feedback interferometry," Opt. Laser Technol. 41, 113-125 (2004).

D. C. L. Cheung, T. H. Barnes, and T. G. Haskell, "Feedback interferometry with membrane mirror for adaptive optics," Opt. Commun. 218, 33-41 (2003).
[CrossRef]

Goldberg, K. A.

Greenaway, A.

A. Greenaway and J. Burnett, Industrial and Medical Applications of Adaptive Optics (IOP, 2004).

Griffin, D. W.

Haskell, T. G.

D. C. L. Cheung, T. H. Barnes, A. R. D. Somervell, and T. G. Haskell, "Aberration correction using a multi-segment mirror with feedback interferometry," Opt. Laser Technol. 41, 113-125 (2004).

D. C. L. Cheung, T. H. Barnes, and T. G. Haskell, "Feedback interferometry with membrane mirror for adaptive optics," Opt. Commun. 218, 33-41 (2003).
[CrossRef]

Herrmann, J.

Horenstein, M.

M. Horenstein, T. Bifano, R. K. Mali, and N. Vandelli, "Electrostatic effects in micromachined actuators for adaptive optics," J. Electrostat. 42, 1-2 (1997).
[CrossRef]

Horenstein, M. N.

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, "Microelectromechanical deformable mirrors," IEEE J. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

Hsu, A.-C.

Hubin, N.

N. Hubin and L. Noethe, "Active optics, adaptive optics, and laser guide stars," Science 262, 1390-1394 (1993).

Kern, P.

P. Kern, "Adaptive optics prototype system for infrared astronomy. I. System description," in Adaptive Optics and Optical Structures, J.J.Schulte-in-den-Baeumen and R.K.Tyson, eds., Proc. SPIE 1271, 243-251 (1990).

Lin, J.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).

Malacara, D.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).

Malacara, Z.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).

Mali, R. K.

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, "Microelectromechanical deformable mirrors," IEEE J. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

M. Horenstein, T. Bifano, R. K. Mali, and N. Vandelli, "Electrostatic effects in micromachined actuators for adaptive optics," J. Electrostat. 42, 1-2 (1997).
[CrossRef]

Medecki, H.

Noethe, L.

N. Hubin and L. Noethe, "Active optics, adaptive optics, and laser guide stars," Science 262, 1390-1394 (1993).

Perreault, J.

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, "Microelectromechanical deformable mirrors," IEEE J. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

Porter, J.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).

Queener, H.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).

Servin, M.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).

Shirai, T.

Somervell, A. R. D.

D. C. L. Cheung, T. H. Barnes, A. R. D. Somervell, and T. G. Haskell, "Aberration correction using a multi-segment mirror with feedback interferometry," Opt. Laser Technol. 41, 113-125 (2004).

Tejnil, E.

Thorn, K.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).

Tyson, R. K.

Vandelli, N.

M. Horenstein, T. Bifano, R. K. Mali, and N. Vandelli, "Electrostatic effects in micromachined actuators for adaptive optics," J. Electrostat. 42, 1-2 (1997).
[CrossRef]

Vorontsov, M. A.

Wyant, J. C.

Appl. Opt. (2)

IEEE J. Quantum (1)

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, "Microelectromechanical deformable mirrors," IEEE J. Quantum Electron. 5, 83-89 (1999).
[CrossRef]

J. Electrostat. (1)

M. Horenstein, T. Bifano, R. K. Mali, and N. Vandelli, "Electrostatic effects in micromachined actuators for adaptive optics," J. Electrostat. 42, 1-2 (1997).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

D. C. L. Cheung, T. H. Barnes, and T. G. Haskell, "Feedback interferometry with membrane mirror for adaptive optics," Opt. Commun. 218, 33-41 (2003).
[CrossRef]

Opt. Laser Technol. (1)

D. C. L. Cheung, T. H. Barnes, A. R. D. Somervell, and T. G. Haskell, "Aberration correction using a multi-segment mirror with feedback interferometry," Opt. Laser Technol. 41, 113-125 (2004).

Opt. Lett. (4)

Science (1)

N. Hubin and L. Noethe, "Active optics, adaptive optics, and laser guide stars," Science 262, 1390-1394 (1993).

Other (5)

P. Kern, "Adaptive optics prototype system for infrared astronomy. I. System description," in Adaptive Optics and Optical Structures, J.J.Schulte-in-den-Baeumen and R.K.Tyson, eds., Proc. SPIE 1271, 243-251 (1990).

A. Greenaway and J. Burnett, Industrial and Medical Applications of Adaptive Optics (IOP, 2004).

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley, 2006).

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Adaptive-optics system setup.

Fig. 2
Fig. 2

Block diagram of 2D digital phase feedback-control system.

Fig. 3
Fig. 3

Mapping between PA pixels and DM channels. Note that channels 1–5 are feedback-control points.

Fig. 4
Fig. 4

(a) Variations of phase error with and without controller. Figures from top to bottom correspond to PA pixels 1, 3 and 5, respectively. (b) Magnitudes of output spectrum analysis of pixel 1.

Fig. 5
Fig. 5

Images of focused spot: (a) before wavefront correction, and (b) after wavefront correction.

Fig. 6
Fig. 6

Strehl ratio analysis of the focused spot. The dotted line curve is the Gaussian fitted curve of the focused spot with no distortion. The solid curve is the intensity curve of the focused spot with controller. The dashed line curve is the intensity curve of the focused spot without controller.

Tables (1)

Tables Icon

Table 1 Times for the Three Different Step Phase Shifts

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = tan 1 [ I ( α 1 ) I ( α 3 ) 2 I ( α 2 ) I ( α 1 ) I ( α 3 ) ] ,

Metrics