Abstract

Cr3+:LiSrAlF6 crystals are an interesting laser medium because of their spectroscopic characteristics: They present a broad emission band in the near infrared and can be pumped either by a flashlamp or by diodes. Up to now, their limitation has been mostly due to their poor thermal properties that limit the laser performance either in the repetition rate in a pulsed system or output power in cw systems. We have designed and constructed a flashlamp-pumped laser using a standard rod pumping cavity that avoids most of the heat generated in the pumping process and allows operation at a fairly high repetition rate of 30  Hz with a high average power of 20   W in a conservative operation mode.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Payne, L. L. Chase, and G. D. Wilke, "Optical spectroscopy of the new laser materials, LiSrAlF6-Cr3+ and LiCaAlF6-Cr3+," J. Lumin. 44, 167-176 (1989).
    [CrossRef]
  2. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, "Laser performance of LiSrAlF6:Cr3+," J. Appl. Phys. 66, 1051-1065 (1989).
    [CrossRef]
  3. M. Stalder, B. H. T. Chai, and M. Bass, "Flashlamp pumped Cr:LiSrAlF6 laser," Appl. Phys. Lett. 58, 216-218 (1991).
    [CrossRef]
  4. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, "Diode-pumped Cr:LiSrAlF6 laser," Opt. Lett. 16, 820-822 (1991).
    [CrossRef] [PubMed]
  5. B. Agate, A. J. Kemp, C. T. A. Brown, and W. Sibbett, "Efficient, high repetition rate femtosecond blue source using a compact Cr:LiSAF laser," Opt. Express 10, 824-831 (2002).
    [PubMed]
  6. M. Ihara, M. Tsunekane, N. Taguchi, and H. Inaba, "Widely tunable, single-longitudinal-mode, diode pumped CW Cr:LiSAF laser," Electron Lett. 31, 888-889 (1995).
    [CrossRef]
  7. S. Uemura and K. Torizuka, "Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser," Opt. Lett. 24, 780-782 (1999).
    [CrossRef]
  8. T. Shimada, J. W. Early, and N. J. Cockroft, "Repetitively pulsed Cr:LiSAF for LIDAR applications," in Advanced Solid-State Lasers, Vol. 20 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1994), pp. 188-191.
  9. D. E. Klimek and A. Mandl, "Power scaling of a flashlamp-pumped Cr:LiSAF thin-slab zig-zag laser," IEEE J. Quantum Electron. 38, 1607-1613 (2002).
    [CrossRef]
  10. H. Takada, K. Miyazaki, and K. Torizuka, "Flashlamp-pumped Cr:LiSAF laser amplifier," IEEE J. Quantum Electron. 33, 2282-2285 (1997).
    [CrossRef]
  11. W. E. White, J. R. Hunter, L. Van Woerkom, T. Ditmire, and M. D. Perry, "120-fs terawatt Ti:Al2O3/Cr:LiSrAlF6 laser system," Opt. Lett. 17, 1067-1069 (1992).
    [CrossRef] [PubMed]
  12. P. Beaud, M. Richardson, E. J. Miesak, and B. H. T. Chai, "8-TW 90-fs Cr:LiSAF laser," Opt. Lett. 18, 1550-1552 (1993).
    [CrossRef] [PubMed]
  13. T. Ditmire, H. Nguyen, and M. D. Perry, "Amplification of femtosecond pulses to 1 J in Cr:LiSrAlF6," Opt. Lett. 20, 1142-1144 (1995).
    [CrossRef] [PubMed]
  14. S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, "Properties of Cr:LiSrAIF6 crystals for laser operation," Appl. Opt. 33, 5526-5536 (1994).
    [CrossRef] [PubMed]
  15. F. Hanson, C. Bendall, and P. Poirier, "Gain measurements and average power capabilities of Cr3+:LiSrAlF6," Opt. Lett. 18, 1423-1425 (1993).
    [CrossRef] [PubMed]
  16. M. Stalder, M. Bass, and B. H. T. Chai, "Thermal quenching of fluorescence in chromium-doped fluoride laser crystals," J. Opt. Soc. Am. B 9, 2271-2273 (1992).
    [CrossRef]
  17. M. D. Perry, D. Strickland, T. Ditmire, and F. G. Patterson, "Cr:LiSrAlF6 regenerative amplifier," Opt. Lett. 17, 604-606 (1992).
    [CrossRef] [PubMed]
  18. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).
  19. D. Findlay and R. A. Clay, "Measurement of internal losses in 4-level lasers," Phys. Lett. 20, 277-278 (1966).
    [CrossRef]

2002 (2)

B. Agate, A. J. Kemp, C. T. A. Brown, and W. Sibbett, "Efficient, high repetition rate femtosecond blue source using a compact Cr:LiSAF laser," Opt. Express 10, 824-831 (2002).
[PubMed]

D. E. Klimek and A. Mandl, "Power scaling of a flashlamp-pumped Cr:LiSAF thin-slab zig-zag laser," IEEE J. Quantum Electron. 38, 1607-1613 (2002).
[CrossRef]

1999 (1)

1997 (1)

H. Takada, K. Miyazaki, and K. Torizuka, "Flashlamp-pumped Cr:LiSAF laser amplifier," IEEE J. Quantum Electron. 33, 2282-2285 (1997).
[CrossRef]

1995 (2)

M. Ihara, M. Tsunekane, N. Taguchi, and H. Inaba, "Widely tunable, single-longitudinal-mode, diode pumped CW Cr:LiSAF laser," Electron Lett. 31, 888-889 (1995).
[CrossRef]

T. Ditmire, H. Nguyen, and M. D. Perry, "Amplification of femtosecond pulses to 1 J in Cr:LiSrAlF6," Opt. Lett. 20, 1142-1144 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

1992 (3)

1991 (2)

1989 (2)

S. A. Payne, L. L. Chase, and G. D. Wilke, "Optical spectroscopy of the new laser materials, LiSrAlF6-Cr3+ and LiCaAlF6-Cr3+," J. Lumin. 44, 167-176 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, "Laser performance of LiSrAlF6:Cr3+," J. Appl. Phys. 66, 1051-1065 (1989).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, "Measurement of internal losses in 4-level lasers," Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Agate, B.

Bass, M.

Beach, R. J.

Beaud, P.

Bendall, C.

Brown, C. T. A.

Chai, B. H. T.

Chase, L. L.

S. A. Payne, L. L. Chase, and G. D. Wilke, "Optical spectroscopy of the new laser materials, LiSrAlF6-Cr3+ and LiCaAlF6-Cr3+," J. Lumin. 44, 167-176 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, "Laser performance of LiSrAlF6:Cr3+," J. Appl. Phys. 66, 1051-1065 (1989).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, "Measurement of internal losses in 4-level lasers," Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Cockroft, N. J.

T. Shimada, J. W. Early, and N. J. Cockroft, "Repetitively pulsed Cr:LiSAF for LIDAR applications," in Advanced Solid-State Lasers, Vol. 20 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1994), pp. 188-191.

DeLoach, L. D.

Ditmire, T.

Early, J. W.

T. Shimada, J. W. Early, and N. J. Cockroft, "Repetitively pulsed Cr:LiSAF for LIDAR applications," in Advanced Solid-State Lasers, Vol. 20 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1994), pp. 188-191.

Findlay, D.

D. Findlay and R. A. Clay, "Measurement of internal losses in 4-level lasers," Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Hanson, F.

Hunter, J. R.

Ihara, M.

M. Ihara, M. Tsunekane, N. Taguchi, and H. Inaba, "Widely tunable, single-longitudinal-mode, diode pumped CW Cr:LiSAF laser," Electron Lett. 31, 888-889 (1995).
[CrossRef]

Inaba, H.

M. Ihara, M. Tsunekane, N. Taguchi, and H. Inaba, "Widely tunable, single-longitudinal-mode, diode pumped CW Cr:LiSAF laser," Electron Lett. 31, 888-889 (1995).
[CrossRef]

Kemp, A. J.

Klimek, D. E.

D. E. Klimek and A. Mandl, "Power scaling of a flashlamp-pumped Cr:LiSAF thin-slab zig-zag laser," IEEE J. Quantum Electron. 38, 1607-1613 (2002).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).

Krupke, W. F.

Kway, W. L.

Long, M.

Mandl, A.

D. E. Klimek and A. Mandl, "Power scaling of a flashlamp-pumped Cr:LiSAF thin-slab zig-zag laser," IEEE J. Quantum Electron. 38, 1607-1613 (2002).
[CrossRef]

Miesak, E. J.

Miyazaki, K.

H. Takada, K. Miyazaki, and K. Torizuka, "Flashlamp-pumped Cr:LiSAF laser amplifier," IEEE J. Quantum Electron. 33, 2282-2285 (1997).
[CrossRef]

Morris, R. C.

Myers, J. F.

Newkirk, H. W.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, "Laser performance of LiSrAlF6:Cr3+," J. Appl. Phys. 66, 1051-1065 (1989).
[CrossRef]

Nguyen, H.

Patterson, F. G.

Payne, S. A.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, "Properties of Cr:LiSrAIF6 crystals for laser operation," Appl. Opt. 33, 5526-5536 (1994).
[CrossRef] [PubMed]

S. A. Payne, L. L. Chase, and G. D. Wilke, "Optical spectroscopy of the new laser materials, LiSrAlF6-Cr3+ and LiCaAlF6-Cr3+," J. Lumin. 44, 167-176 (1989).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, "Laser performance of LiSrAlF6:Cr3+," J. Appl. Phys. 66, 1051-1065 (1989).
[CrossRef]

Perry, M. D.

Poirier, P.

Richardson, M.

Rosenberg, A.

Scheps, R.

Serreze, H. B.

Shimada, T.

T. Shimada, J. W. Early, and N. J. Cockroft, "Repetitively pulsed Cr:LiSAF for LIDAR applications," in Advanced Solid-State Lasers, Vol. 20 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1994), pp. 188-191.

Sibbett, W.

Smith, L. K.

Solarz, R. W.

Stalder, M.

Strickland, D.

Taguchi, N.

M. Ihara, M. Tsunekane, N. Taguchi, and H. Inaba, "Widely tunable, single-longitudinal-mode, diode pumped CW Cr:LiSAF laser," Electron Lett. 31, 888-889 (1995).
[CrossRef]

Takada, H.

H. Takada, K. Miyazaki, and K. Torizuka, "Flashlamp-pumped Cr:LiSAF laser amplifier," IEEE J. Quantum Electron. 33, 2282-2285 (1997).
[CrossRef]

Tassano, J. H.

Torizuka, K.

S. Uemura and K. Torizuka, "Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser," Opt. Lett. 24, 780-782 (1999).
[CrossRef]

H. Takada, K. Miyazaki, and K. Torizuka, "Flashlamp-pumped Cr:LiSAF laser amplifier," IEEE J. Quantum Electron. 33, 2282-2285 (1997).
[CrossRef]

Tsunekane, M.

M. Ihara, M. Tsunekane, N. Taguchi, and H. Inaba, "Widely tunable, single-longitudinal-mode, diode pumped CW Cr:LiSAF laser," Electron Lett. 31, 888-889 (1995).
[CrossRef]

Uemura, S.

Van Woerkom, L.

White, W. E.

Wilke, G. D.

S. A. Payne, L. L. Chase, and G. D. Wilke, "Optical spectroscopy of the new laser materials, LiSrAlF6-Cr3+ and LiCaAlF6-Cr3+," J. Lumin. 44, 167-176 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Stalder, B. H. T. Chai, and M. Bass, "Flashlamp pumped Cr:LiSrAlF6 laser," Appl. Phys. Lett. 58, 216-218 (1991).
[CrossRef]

Electron Lett. (1)

M. Ihara, M. Tsunekane, N. Taguchi, and H. Inaba, "Widely tunable, single-longitudinal-mode, diode pumped CW Cr:LiSAF laser," Electron Lett. 31, 888-889 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. E. Klimek and A. Mandl, "Power scaling of a flashlamp-pumped Cr:LiSAF thin-slab zig-zag laser," IEEE J. Quantum Electron. 38, 1607-1613 (2002).
[CrossRef]

H. Takada, K. Miyazaki, and K. Torizuka, "Flashlamp-pumped Cr:LiSAF laser amplifier," IEEE J. Quantum Electron. 33, 2282-2285 (1997).
[CrossRef]

J. Appl. Phys. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, "Laser performance of LiSrAlF6:Cr3+," J. Appl. Phys. 66, 1051-1065 (1989).
[CrossRef]

J. Lumin. (1)

S. A. Payne, L. L. Chase, and G. D. Wilke, "Optical spectroscopy of the new laser materials, LiSrAlF6-Cr3+ and LiCaAlF6-Cr3+," J. Lumin. 44, 167-176 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (7)

Phys. Lett. (1)

D. Findlay and R. A. Clay, "Measurement of internal losses in 4-level lasers," Phys. Lett. 20, 277-278 (1966).
[CrossRef]

Other (2)

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).

T. Shimada, J. W. Early, and N. J. Cockroft, "Repetitively pulsed Cr:LiSAF for LIDAR applications," in Advanced Solid-State Lasers, Vol. 20 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1994), pp. 188-191.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the pumping cavity without an endcap. The different cooling water entrances for refrigerating the crystal and flashlamps are indicated; the optical filters, located between each flashlamp and the crystal, divide the pumping cavity into three independent cooling chambers.

Fig. 2
Fig. 2

Cr:LiSAF laser slope efficiencies for various output coupler reflectivities (R OC) along with linear fitted functions for each output coupler, as a function of the pump energy per flashlamp. For each R OC data set, the two or three lower energy points were disregarded in the fitting because of the unstable laser oscillation near the threshold. Error bars were taken into account in each fitting but are not shown in the graph because they are smaller than the symbols used in the plot.

Fig. 3
Fig. 3

Cr:LiSAF laser spectrum with R OC = 89.3% output coupler measured at 80 J energy and 10 Hz repetition rate. The spikes observed at 847.5, 849, 851, and 858 nm are due to spectrometer imperfections.

Fig. 4
Fig. 4

Temporal evolution of the laser pulses at 100 J for the R OC 89.3% output coupler. The thin curve is a single shot and the thick curve is the average of 1000 shots. The width (FWHM) is indicated for the average curve. The time axis starts at 900 μs due to the relative delay between the trigger and the detector signals.

Fig. 5
Fig. 5

Findlay–Clay analysis of the laser. The fitted line crosses the y axis at −0.048, providing the resonator losses.

Fig. 6
Fig. 6

Dependence of the pulse energy on the pump repetition rate for different pumping energies. The output coupler reflectivity is R OC = 89.3%.

Fig. 7
Fig. 7

(Color online) Experimental measured flashlamp emission at 100 J (open squares) and Cr:LiSAF spontaneous emission (open circles), with the empirical function fitted to the flashlamps emission and the numerical solution of the Cr:LiSAF rate equation for τ = 64 μs (solid curves), normalized to (peak amplitude) = 1. In the curves for (a) 4 Hz and (b) 30 Hz, the flashlamp pulse duration (FWHM) is indicated. The time axis starts at 850 μs due to the relative delay between the trigger and the detector signals.

Tables (1)

Tables Icon

Table 1 Values Obtained from the Fitted Functions Shown in Fig. 2 for Each Output Coupler

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g t l = 1 2 [ L ln ( R OC ) ] ,
d N 2 d t = N 0 I p ( t ) N 2 τ ,

Metrics