Abstract

We have developed a 100  W class Nd:YAG master oscillator power amplifier system based in part on an end-pumped zigzag slab power amplifier. This amplifier incorporates parasitic oscillation suppression by using roughened edges and achieves a small-signal gain coefficient (g0l) of 8.06. We describe a novel technique for suppression of parasitic oscillations using claddings on slab edges that significantly increases g0l to 11.63 and increases the single-pass extracted power in a power amplifier by 50%. Commercial use of these zigzag slab amplifiers has been limited by the time and cost of production. We describe a new batch fabrication technique that improves the quality and significantly reduces the cost of zigzag slabs.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Wiechmann, T. J. Kane, D. Haserot, F. Adams, G. Truong, and J. Kmetec, "20 W diode-pumped single-frequency Nd:YAG MOPA for the Laser Interferometer Gravitational Wave Observatory," in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1998), p. 432.
  2. LIGO II Conceptual Project Book (1999), www.ligo.org/pdf/M990288-A.pdf.
  3. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, "High power fundamental mode Nd:YAG laser with efficient birefringence compensation," Opt. Express 12, 3581-3589 (2004).
    [CrossRef] [PubMed]
  4. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. Alvarez-Chavez, and P. W. Turner, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30, 459-462 (2005).
    [CrossRef] [PubMed]
  5. W. S. Martin and J. P. Chernoch, "Multiple internal reflection face pumped laser," U.S. patent 3,633,126 (4 January 1972).
  6. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).
  7. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
    [CrossRef]
  8. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser. Part 1: Theory," IEEE J. Quantum Electron. 20, 289-301 (1984).
    [CrossRef]
  9. R. J. Shine, Jr., A. J. Alfrey, and R. L. Byer, "40 W CW, TEM00-mode, diode-laser-pumped, Nd:YAG miniature-slab laser," Opt. Lett. 20, 459-462 (1995).
    [CrossRef] [PubMed]
  10. T. Kane, R. Eckardt, and R. Byer, "Reduced thermal focusing and birefringence in zigzag slab geometry crystalline lasers," IEEE J. Quantum Electron. 19, 1351-1354 (1983).
    [CrossRef]
  11. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 2-4.
  12. T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001).
    [CrossRef]
  13. A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5 W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994).
    [CrossRef] [PubMed]
  14. G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.
  15. S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, "100 W, single frequency, low-noise, diffraction-limited beam from an Nd:YAG end-pumped slab MOPA for LIGO," in Advanced Solid-State Photonics (Nineteenth Topical Meeting and Tabletop Exhibit), Postdeadline Proceedings, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).
  16. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. King, S. Seel, and R. L. Savage, Jr., "Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner," Opt. Lett. 23, 1704-1706 (1998).
    [CrossRef]
  17. S. Saraf, K. Urbanek, R. L. Byer, and P. J. King, "Quantum noise measurements in a continuous-wave laser-diode-pumped Nd:YAG saturated amplifier," Opt. Lett. 30, 1195-1197 (2005).
    [CrossRef] [PubMed]
  18. A. E. Siegman, Lasers (University Science, 1987).
  19. Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. II," IEEE J. Quantum Electron. 40, 917-927 (2004).
    [CrossRef]
  20. Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. I," IEEE J. Quantum Electron. 40, 909-916 (2004).
    [CrossRef]
  21. J. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Franz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
    [CrossRef]
  22. L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
  23. T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
    [CrossRef]
  24. J. Fryer, Microcooling Concepts, Inc., 7522 Slater Ave., Suite 122, Huntington Beach, Calif. 92647 (custom design).
  25. T. J. Kane and R. L. Byer, "62-dB-gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986).
    [CrossRef] [PubMed]
  26. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).
  27. D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillations and amplified spontaneous emission in face-pumped total internal reflection lasers," Proc. SPIE 736, 74-83 (1987).
  28. T. Rutherford, "An edge-pumped Yb:YAG laser and phased array resonator," Ph.D. dissertation (Stanford University, 2001).
  29. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium-and chromium-doped gadolinium scandium gallium garnets," J. Opt. Soc. Am. B 3, 102-114 (1986).
    [CrossRef]
  30. H. Meissner, "Composites made from single crystal substances," U.S. patent 5 ,441,803 (15 August 1995).
  31. D. Z. Gwo, "Hydroxide-catalyzed bonding," U.S. patent 6,548,176 (15 April 2003).
  32. D. Z. Gwo, "Ultra precision and reliable bonding method," U.S. patent 6,284,085 (4 September 2001).
  33. N. Traggis, Precision Photonics Corporation, Boulder, Colo. (personal communication, 2005).

2006 (1)

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

2005 (2)

2004 (3)

M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, "High power fundamental mode Nd:YAG laser with efficient birefringence compensation," Opt. Express 12, 3581-3589 (2004).
[CrossRef] [PubMed]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

2001 (2)

T. Rutherford, "An edge-pumped Yb:YAG laser and phased array resonator," Ph.D. dissertation (Stanford University, 2001).

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001).
[CrossRef]

2000 (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

1998 (1)

1995 (2)

1994 (2)

A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5 W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994).
[CrossRef] [PubMed]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

1993 (1)

T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

1989 (1)

J. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Franz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
[CrossRef]

1987 (1)

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillations and amplified spontaneous emission in face-pumped total internal reflection lasers," Proc. SPIE 736, 74-83 (1987).

1986 (2)

1984 (1)

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser. Part 1: Theory," IEEE J. Quantum Electron. 20, 289-301 (1984).
[CrossRef]

1983 (1)

T. Kane, R. Eckardt, and R. Byer, "Reduced thermal focusing and birefringence in zigzag slab geometry crystalline lasers," IEEE J. Quantum Electron. 19, 1351-1354 (1983).
[CrossRef]

1963 (1)

L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).

Adams, F.

W. Wiechmann, T. J. Kane, D. Haserot, F. Adams, G. Truong, and J. Kmetec, "20 W diode-pumped single-frequency Nd:YAG MOPA for the Laser Interferometer Gravitational Wave Observatory," in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1998), p. 432.

Alegria, C.

Alfrey, A. J.

Alvarez-Chavez, J.

Bass, M.

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Benfey, D. P.

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillations and amplified spontaneous emission in face-pumped total internal reflection lasers," Proc. SPIE 736, 74-83 (1987).

Brauch, U.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

Brendel, M.

Brown, D. C.

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillations and amplified spontaneous emission in face-pumped total internal reflection lasers," Proc. SPIE 736, 74-83 (1987).

Byer, R.

T. Kane, R. Eckardt, and R. Byer, "Reduced thermal focusing and birefringence in zigzag slab geometry crystalline lasers," IEEE J. Quantum Electron. 19, 1351-1354 (1983).
[CrossRef]

Byer, R. L.

S. Saraf, K. Urbanek, R. L. Byer, and P. J. King, "Quantum noise measurements in a continuous-wave laser-diode-pumped Nd:YAG saturated amplifier," Opt. Lett. 30, 1195-1197 (2005).
[CrossRef] [PubMed]

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001).
[CrossRef]

B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. King, S. Seel, and R. L. Savage, Jr., "Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner," Opt. Lett. 23, 1704-1706 (1998).
[CrossRef]

R. J. Shine, Jr., A. J. Alfrey, and R. L. Byer, "40 W CW, TEM00-mode, diode-laser-pumped, Nd:YAG miniature-slab laser," Opt. Lett. 20, 459-462 (1995).
[CrossRef] [PubMed]

A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5 W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994).
[CrossRef] [PubMed]

T. J. Kane and R. L. Byer, "62-dB-gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986).
[CrossRef] [PubMed]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser. Part 1: Theory," IEEE J. Quantum Electron. 20, 289-301 (1984).
[CrossRef]

S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, "100 W, single frequency, low-noise, diffraction-limited beam from an Nd:YAG end-pumped slab MOPA for LIGO," in Advanced Solid-State Photonics (Nineteenth Topical Meeting and Tabletop Exhibit), Postdeadline Proceedings, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Caird, J. A.

Chen, B.

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Chen, Y.

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Chernoch, J. P.

W. S. Martin and J. P. Chernoch, "Multiple internal reflection face pumped laser," U.S. patent 3,633,126 (4 January 1972).

Cheung, E.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Chryssou, C. E.

Codemard, C. A.

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Danzmann, K.

Dupriez, P.

Eckardt, R.

T. Kane, R. Eckardt, and R. Byer, "Reduced thermal focusing and birefringence in zigzag slab geometry crystalline lasers," IEEE J. Quantum Electron. 19, 1351-1354 (1983).
[CrossRef]

Eggleston, J.

J. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Franz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
[CrossRef]

Eggleston, J. M.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser. Part 1: Theory," IEEE J. Quantum Electron. 20, 289-301 (1984).
[CrossRef]

Epp, P.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Fallnich, C.

Fan, T. Y.

T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

Farinas, A. D.

Frantz, L. M.

J. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Franz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
[CrossRef]

Franz, L. M.

L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).

Frede, M.

Fryer, J.

J. Fryer, Microcooling Concepts, Inc., 7522 Slater Ave., Suite 122, Huntington Beach, Calif. 92647 (custom design).

Gehm, W. J.

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillations and amplified spontaneous emission in face-pumped total internal reflection lasers," Proc. SPIE 736, 74-83 (1987).

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

Goodno, G. D.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 2-4.

Gustafson, E. K.

Gwo, D. Z.

D. Z. Gwo, "Ultra precision and reliable bonding method," U.S. patent 6,284,085 (4 September 2001).

D. Z. Gwo, "Hydroxide-catalyzed bonding," U.S. patent 6,548,176 (15 April 2003).

Harkenrider, J.

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 2-4.

Haserot, D.

W. Wiechmann, T. J. Kane, D. Haserot, F. Adams, G. Truong, and J. Kmetec, "20 W diode-pumped single-frequency Nd:YAG MOPA for the Laser Interferometer Gravitational Wave Observatory," in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1998), p. 432.

Hickey, L. M. B.

Holmes, D. H.

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillations and amplified spontaneous emission in face-pumped total internal reflection lasers," Proc. SPIE 736, 74-83 (1987).

Horley, R.

Howland, D.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Hugel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

Injeyan, H.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

J. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Franz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
[CrossRef]

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 2-4.

Jeong, Y.

Kane, T.

T. Kane, R. Eckardt, and R. Byer, "Reduced thermal focusing and birefringence in zigzag slab geometry crystalline lasers," IEEE J. Quantum Electron. 19, 1351-1354 (1983).
[CrossRef]

Kane, T. J.

T. J. Kane and R. L. Byer, "62-dB-gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986).
[CrossRef] [PubMed]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser. Part 1: Theory," IEEE J. Quantum Electron. 20, 289-301 (1984).
[CrossRef]

W. Wiechmann, T. J. Kane, D. Haserot, F. Adams, G. Truong, and J. Kmetec, "20 W diode-pumped single-frequency Nd:YAG MOPA for the Laser Interferometer Gravitational Wave Observatory," in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1998), p. 432.

Kar, A.

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

King, P.

King, P. J.

Kmetec, J.

W. Wiechmann, T. J. Kane, D. Haserot, F. Adams, G. Truong, and J. Kmetec, "20 W diode-pumped single-frequency Nd:YAG MOPA for the Laser Interferometer Gravitational Wave Observatory," in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1998), p. 432.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).

Komine, H.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Krupke, W. F.

Kuhn, K.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser. Part 1: Theory," IEEE J. Quantum Electron. 20, 289-301 (1984).
[CrossRef]

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Lee, K. K.

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillations and amplified spontaneous emission in face-pumped total internal reflection lasers," Proc. SPIE 736, 74-83 (1987).

Long, W.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Marion, J. E.

Martin, W. S.

W. S. Martin and J. P. Chernoch, "Multiple internal reflection face pumped laser," U.S. patent 3,633,126 (4 January 1972).

McClellan, M.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

McNaught, S. J.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Meissner, H.

H. Meissner, "Composites made from single crystal substances," U.S. patent 5 ,441,803 (15 August 1995).

Nilsson, J.

Nodvik, J. S.

L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

Palese, S.

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 2-4.

Patel, M. K. R.

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

Payne, D. N.

Redmond, S.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Rutherford, T.

T. Rutherford, "An edge-pumped Yb:YAG laser and phased array resonator," Ph.D. dissertation (Stanford University, 2001).

Rutherford, T. S.

Sahu, J. K.

Saraf, S.

S. Saraf, K. Urbanek, R. L. Byer, and P. J. King, "Quantum noise measurements in a continuous-wave laser-diode-pumped Nd:YAG saturated amplifier," Opt. Lett. 30, 1195-1197 (2005).
[CrossRef] [PubMed]

S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, "100 W, single frequency, low-noise, diffraction-limited beam from an Nd:YAG end-pumped slab MOPA for LIGO," in Advanced Solid-State Photonics (Nineteenth Topical Meeting and Tabletop Exhibit), Postdeadline Proceedings, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Savage, R. L.

Seel, S.

Seifert, F.

Shine, R. J.

Shinn, M. D.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1987).

Simpson, R.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Sinha, S.

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001).
[CrossRef]

S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, "100 W, single frequency, low-noise, diffraction-limited beam from an Nd:YAG end-pumped slab MOPA for LIGO," in Advanced Solid-State Photonics (Nineteenth Topical Meeting and Tabletop Exhibit), Postdeadline Proceedings, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Soh, D. B. S.

Sollee, J.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Sridharan, A. K.

S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, "100 W, single frequency, low-noise, diffraction-limited beam from an Nd:YAG end-pumped slab MOPA for LIGO," in Advanced Solid-State Photonics (Nineteenth Topical Meeting and Tabletop Exhibit), Postdeadline Proceedings, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Stokowski, S. E.

Traggis, N.

N. Traggis, Precision Photonics Corporation, Boulder, Colo. (personal communication, 2005).

Truong, G.

W. Wiechmann, T. J. Kane, D. Haserot, F. Adams, G. Truong, and J. Kmetec, "20 W diode-pumped single-frequency Nd:YAG MOPA for the Laser Interferometer Gravitational Wave Observatory," in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1998), p. 432.

Tulloch, W. M.

Turner, P. W.

Uehara, N.

Unternahrer, J.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser. Part 1: Theory," IEEE J. Quantum Electron. 20, 289-301 (1984).
[CrossRef]

Urbanek, K.

Voss, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

Wanzcyk, L.

Weber, M.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Weiss, B.

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Wiechmann, W.

W. Wiechmann, T. J. Kane, D. Haserot, F. Adams, G. Truong, and J. Kmetec, "20 W diode-pumped single-frequency Nd:YAG MOPA for the Laser Interferometer Gravitational Wave Observatory," in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1998), p. 432.

Wilhelm, R.

Willke, B.

Wittig, K.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (1)

G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.

Appl. Phys. B (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).

IEEE J. Quantum Electron. (6)

Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. II," IEEE J. Quantum Electron. 40, 917-927 (2004).
[CrossRef]

Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. I," IEEE J. Quantum Electron. 40, 909-916 (2004).
[CrossRef]

J. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Franz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser. Part 1: Theory," IEEE J. Quantum Electron. 20, 289-301 (1984).
[CrossRef]

T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

T. Kane, R. Eckardt, and R. Byer, "Reduced thermal focusing and birefringence in zigzag slab geometry crystalline lasers," IEEE J. Quantum Electron. 19, 1351-1354 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (7)

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. Alvarez-Chavez, and P. W. Turner, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30, 459-462 (2005).
[CrossRef] [PubMed]

S. Saraf, K. Urbanek, R. L. Byer, and P. J. King, "Quantum noise measurements in a continuous-wave laser-diode-pumped Nd:YAG saturated amplifier," Opt. Lett. 30, 1195-1197 (2005).
[CrossRef] [PubMed]

T. J. Kane and R. L. Byer, "62-dB-gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986).
[CrossRef] [PubMed]

A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5 W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994).
[CrossRef] [PubMed]

R. J. Shine, Jr., A. J. Alfrey, and R. L. Byer, "40 W CW, TEM00-mode, diode-laser-pumped, Nd:YAG miniature-slab laser," Opt. Lett. 20, 459-462 (1995).
[CrossRef] [PubMed]

B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. King, S. Seel, and R. L. Savage, Jr., "Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner," Opt. Lett. 23, 1704-1706 (1998).
[CrossRef]

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001).
[CrossRef]

Proc. SPIE (1)

D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillations and amplified spontaneous emission in face-pumped total internal reflection lasers," Proc. SPIE 736, 74-83 (1987).

U.S. patent 5 (1)

H. Meissner, "Composites made from single crystal substances," U.S. patent 5 ,441,803 (15 August 1995).

Other (13)

D. Z. Gwo, "Hydroxide-catalyzed bonding," U.S. patent 6,548,176 (15 April 2003).

D. Z. Gwo, "Ultra precision and reliable bonding method," U.S. patent 6,284,085 (4 September 2001).

N. Traggis, Precision Photonics Corporation, Boulder, Colo. (personal communication, 2005).

G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 2-4.

T. Rutherford, "An edge-pumped Yb:YAG laser and phased array resonator," Ph.D. dissertation (Stanford University, 2001).

S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, "100 W, single frequency, low-noise, diffraction-limited beam from an Nd:YAG end-pumped slab MOPA for LIGO," in Advanced Solid-State Photonics (Nineteenth Topical Meeting and Tabletop Exhibit), Postdeadline Proceedings, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).

J. Fryer, Microcooling Concepts, Inc., 7522 Slater Ave., Suite 122, Huntington Beach, Calif. 92647 (custom design).

A. E. Siegman, Lasers (University Science, 1987).

W. Wiechmann, T. J. Kane, D. Haserot, F. Adams, G. Truong, and J. Kmetec, "20 W diode-pumped single-frequency Nd:YAG MOPA for the Laser Interferometer Gravitational Wave Observatory," in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1998), p. 432.

LIGO II Conceptual Project Book (1999), www.ligo.org/pdf/M990288-A.pdf.

W. S. Martin and J. P. Chernoch, "Multiple internal reflection face pumped laser," U.S. patent 3,633,126 (4 January 1972).

L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Diagram of the end-pumped Nd:YAG slab amplifier.

Fig. 2
Fig. 2

(a) Geometry of the partially filled slab at near-normal incidence for a single-pass slab amplifier. The bounce period is Lb and the overlap region has a length Ls. (b) The active cross section of the slab has a width of 2w TH and a thickness of t. The active area is partially filled with incident signal power.

Fig. 3
Fig. 3

(Color online) (a) Two-dimensional view of the slab with dimensions and coating properties. (b) Photograph of a fabricated Nd:YAG slab.

Fig. 4
Fig. 4

Expected amplifier gain coefficient (g0l) and single-pass output power Pout (W) versus pump power P pump (W). η c = 1, η abs = 1, η q = 0.76, η p = 0.92, γ = 28.33°, f = 0.26, wg = 300 μm, wt = 1 mm2, I sat = 2500 kW∕cm2, Pin = 30 W.

Fig. 5
Fig. 5

(Color online) Schematic of the fabricated slab with polished non-TIR (edge) faces and the small-signal gain versus pump power P pump (W).

Fig. 6
Fig. 6

(Color online) Schematic of polished and beveled side faces of the slab and the small-signal gain (g 0 l) versus pump power P pump (W).

Fig. 7
Fig. 7

(Color online) (a) Schematic of rough edges of the slab used for parasitic suppression. (b) Parasitic-limited small-signal gain (g0l) versus pump power P pump (W).

Fig. 8
Fig. 8

(Color online) (a) Illustration of slabs with claddings on edges for parasitic suppression. (b) Parasitic-limited small-signal gain (g0l) versus pump power P pump (W).

Fig. 9
Fig. 9

(Color online) Single-pass extracted power P out (W) − P in (W) versus I inI sat. Parameters used in Eqs. (2)–(11): wg = 300 μm, g0l = 8.06, γ = 28.33°.

Fig. 10
Fig. 10

Total output power versus pump power P pump (W) for the rough and cladded edges of the slabs. The filled circles represent measured values for the three amplifier tests. The solid lines represent the theoretical output power P out (W) expected from Eq. (2) for both single-pass, end-pumped zigzag slab amplifiers. An analytical expression for double-pass output on the rough edges of the slab does not exist.

Fig. 11
Fig. 11

(a) Schematic of the doped and undoped blocks used to fabricate the zigzag slab. (b) View of a composite block produced from two undoped blocks and one doped block. W = T = 8 mm, L = 70 mm. (c) Diagram illustrating the dicing of a composite block into plates. (d) Three-dimensional view of a finished slab plate with polished faces and polished ends with angles α and β. The thickness t is the thickness of the final slab. The endface angles and the length S are also the finished dimensions of the slab. (e) Side view illustrating the coatings applied to four sides of the slab slice of (d). (f) Illustration of the dicing of a coated slab plate into completed zigzag slabs.

Fig. 12
Fig. 12

(Color online) World's smallest Yb:YAG slab laser fabricated by the batch fabrication process (0.4 mm × 0.4 mm × 11 mm).

Tables (1)

Tables Icon

Table 1 Summary of Batch Fabrication Steps and Cost per Operation

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I out = I in exp [ g 0 l ( 1 + I in I sat ) 1 ] ,
P out = I sat A cos ( γ ) f ( 2 f ) ln ( 1 + { exp [ P in I sat A cos ( γ ) f ( 2 f ) ] 1 } exp ( g 0 l ) ) ,
w TH = w g / 2 .
f = L s L b = 1 2 w g t sec γ ,
L s = 2 w g sin γ ,
L b = 2 t tan γ .
g 0 l = P pump η w t I sat cos γ ,
η = η abs η p η q .
η abs = [ 1 exp ( κ l doped ) ] η c ,
P avail = P pump η A w t .
P extr = P avail f ( 2 f ) .
P unextracted = P avail ( 1 f ) 2 .
( g 0 l ) parasitic = 1 l T ln ( i = 1 N R i ) ,
θ crit sin 1 ( n clad n YAG ) .

Metrics