Abstract

A reflection-type holographic disk memory system with random phase shift multiplexing is proposed. The experimental results show that a binary data page of 18×17  bits is recorded successfully at intervals of 4  μm in a Fe:LiNbO3 crystal with a thickness of 0.5  mm when six data pages are superimposed. Numerical results show that random phase modulation can improve the shift selectivity in shift multiplexing recording as well as in data security. Experimental and numerical results show that reflection-type holographic disk memory has a high potential for terabyte storage capacity as in transmission-type memory.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
  2. L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE 92, 1231-1280 (2004).
    [CrossRef]
  3. L. d'Auria, J. P. Huignard, and E. Spitz, "Holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Magn. 9, 83-94 (1973).
    [CrossRef]
  4. G. Barbastathis, M. Levinos, and D. Psaltis, "Shift multiplexing with spherical reference waves," Appl. Opt. 35, 2403-2417 (1996).
    [CrossRef] [PubMed]
  5. V. B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. (USSR) 65, 392-395 (1988).
  6. H. Horimai and X. Tan, "Advanced collinear holography," Opt. Rev. 12, 90-92 (2005).
    [CrossRef]
  7. B. Javidi, G. Zhang, and J. Li, "Encrypted optical memory using double-random phase encoding," Appl. Opt. 1054-1058 (1997).
    [CrossRef] [PubMed]
  8. O. Matoba and B. Javidi, "Encrypted optical memory system using three-dimensional keys in the Fresnel domain," Opt. Lett. 24, 762-764 (1999).
    [CrossRef]
  9. X. Tan, O. Matoba, T. Shimura, and K. Kuroda, "Improvement in holographic storage capacity by use of double random phase encryption," Appl. Opt. 40, 4721-4727 (2001).
    [CrossRef]
  10. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-transfer-rate high-capacity holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  11. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

2005 (1)

H. Horimai and X. Tan, "Advanced collinear holography," Opt. Rev. 12, 90-92 (2005).
[CrossRef]

2004 (2)

2001 (1)

1999 (1)

1997 (1)

B. Javidi, G. Zhang, and J. Li, "Encrypted optical memory using double-random phase encoding," Appl. Opt. 1054-1058 (1997).
[CrossRef] [PubMed]

1996 (1)

1988 (1)

V. B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. (USSR) 65, 392-395 (1988).

1973 (1)

L. d'Auria, J. P. Huignard, and E. Spitz, "Holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Magn. 9, 83-94 (1973).
[CrossRef]

1969 (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Barbastathis, G.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Bjornson, E.

Caulfield, H. J.

H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

d'Auria, L.

L. d'Auria, J. P. Huignard, and E. Spitz, "Holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Magn. 9, 83-94 (1973).
[CrossRef]

Hesselink, L.

Horimai, H.

H. Horimai and X. Tan, "Advanced collinear holography," Opt. Rev. 12, 90-92 (2005).
[CrossRef]

Huignard, J. P.

L. d'Auria, J. P. Huignard, and E. Spitz, "Holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Magn. 9, 83-94 (1973).
[CrossRef]

Javidi, B.

O. Matoba and B. Javidi, "Encrypted optical memory system using three-dimensional keys in the Fresnel domain," Opt. Lett. 24, 762-764 (1999).
[CrossRef]

B. Javidi, G. Zhang, and J. Li, "Encrypted optical memory using double-random phase encoding," Appl. Opt. 1054-1058 (1997).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Kuroda, K.

Kwan, D.

Levinos, M.

Li, J.

B. Javidi, G. Zhang, and J. Li, "Encrypted optical memory using double-random phase encoding," Appl. Opt. 1054-1058 (1997).
[CrossRef] [PubMed]

Markov, V. B.

V. B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. (USSR) 65, 392-395 (1988).

Matoba, O.

Okas, R.

Orlov, S. S.

Phillips, W.

Psaltis, D.

Shimura, T.

Sincerbox, G.

H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Snyder, R.

Spitz, E.

L. d'Auria, J. P. Huignard, and E. Spitz, "Holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Magn. 9, 83-94 (1973).
[CrossRef]

Sundaram, P.

Takashima, Y.

Tan, X.

Zhang, G.

B. Javidi, G. Zhang, and J. Li, "Encrypted optical memory using double-random phase encoding," Appl. Opt. 1054-1058 (1997).
[CrossRef] [PubMed]

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

IEEE Trans. Magn. (1)

L. d'Auria, J. P. Huignard, and E. Spitz, "Holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Magn. 9, 83-94 (1973).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

H. Horimai and X. Tan, "Advanced collinear holography," Opt. Rev. 12, 90-92 (2005).
[CrossRef]

Opt. Spectrosc. (1)

V. B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. (USSR) 65, 392-395 (1988).

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Other (1)

H. J. Caulfield, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Schematic of reflection-type holographic memory with random phase shift multiplexing: RPM, random phase mask; PBS, polarization beam splitter; QWP, quarter-wave plate; M, mirror.

Fig. 2
Fig. 2

Experimental setup: ND, neutral-density filter; M1–M3, mirrors; BE, beam expander; A1–A3, apertures; BS, beam splitter; PBS, polarization beam splitter; RPM, random phase mask; HWP1, HWP2, half-wave plates; P, polarizer; SH1, SH2 shutters; MS, movable stage; OL1–OL3, objective lenses.

Fig. 3
Fig. 3

(Color online) Diffraction efficiency as a function of spatial shift of the crystal without and with random phase modulation (RPM) in the reference arm.

Fig. 4
Fig. 4

Recordings of two-dimensional binary data: (a) input and (b)–(h) reconstructed images when the LN crystal is shifted by (b) −3, (c) −2, (d) −1, (e) 0, (f) 1, (g) 2, and (h) 3 μm.

Fig. 5
Fig. 5

(Color online) Diffraction efficiency as a function of position of the recording medium in multiple recording of six patterns.

Fig. 6
Fig. 6

Experiments on data security: (a) successful reconstruction with the correct key and (b) unsuccessful reconstruction with the incorrect key.

Fig. 7
Fig. 7

(Color online) Configuration of a simulator of reflection-type holographic memory.

Fig. 8
Fig. 8

Phase retardation caused by spatial shift of the recording medium.

Fig. 9
Fig. 9

(Color online) Numerical results of diffraction efficiency as a function of spatial shift of the crystal without and with random phase modulation (RPM) in the reference arm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 2 π Δ x λ sin θ

Metrics