Abstract

Codeposited gadolinia silica composite films have been probed for their growth-dependent optical and microstructural properties using phase-modulated spectroscopic ellipsometry and scanning probe microscopy. The mean refractive indices were computed using an effective ellipsometric multilayer modeling approach. Most of the composite films have shown growth-induced nonlinear refractive indices to some extent. However, the mean optical properties have depicted interesting trends in the microstructural evolutions. Gadolinia silica composite films in the composition ratio ranging from 90:10 to 70:30 have depicted superior optical as well as morphological properties. Unlike conventional oxide films, these composite films displayed microstructural, spectral refractive index, and bandgap supremacy over the pure films. Such an observation cannot be explained by the empirical Moss law. Atomic force microscopy also revealed a superior morphology in the composite films. The autocorrelation and height–height correlation functional analysis have distinctly supported such superior microstructural features in the composite films, which justifies the supremacy of the optical properties. Such an observation has opened up possibilities to utilize such composite films toward deep- and extreme-ultraviolet spectral regions of the electromagnetic spectrum.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jacobsson, "Optical properties of a class of inhomogeneous thin films," Opt. Acta 10, 309-323 (1963).
    [CrossRef]
  2. R. Jacobsson and J. O. Martensson, "Evaporated inhomogeneous thin films," Appl. Opt. 5, 29-34 (1966).
    [CrossRef] [PubMed]
  3. N. K. Sahoo and A. P. Shapiro, "Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution," Appl. Opt. 37, 698-718 (1998).
    [CrossRef]
  4. D. E. Aspnes, "Bounds on allowed values of the effective dielectric function of two-component composites at finite frequencies," Phys Rev. B 25, 1358-1361 (1982).
    [CrossRef]
  5. W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004).
    [CrossRef]
  6. A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and J. A. Dobrowolski, "Influence of small inhomogeneities on the spectral characteristics of single thin films," Appl. Opt. 36, 7188-7198 (1997).
    [CrossRef]
  7. M. Kar, B. S. Verma, A. Basu, and R. Bhattacharyya, "Modeling of the refractive index and extinction coefficient of binary composite films," Appl. Opt. 40, 6301-6306 (2001).
    [CrossRef]
  8. H. Chen and W. Z. Shen, "Perspectives in the characteristics and applications of Tauc-Lorentz dielectric function model," Eur. Phys. J. B 43, 503-507 (2005).
    [CrossRef]
  9. S. H. Wemple and M. DiDomenico, Jr., "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971).
    [CrossRef]
  10. H. Lee, I. Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I. S. Yang, "Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films," J. Appl. Phys. 90, 813-818 (2001).
    [CrossRef]
  11. A. V. Osipov, F. Schmitt, and P. Hess, "Real-time analysis of wetting-layer evolution and island nucleation using spectroscopic ellipsometry with Tauc-Lorentz parametrization," Thin Solid Films 472, 31-36 (2005).
    [CrossRef]
  12. Y. J. Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B. H. Lee, and J. C. Lee, "Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties," Appl. Phys. Lett. 80, 1249-1251 (2002).
    [CrossRef]
  13. B. von Blanckenhagen, D. Tonova, and J. Ullmann, "Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials," Appl. Opt. 41, 3137-3141 (2002).
    [CrossRef] [PubMed]
  14. J. Price, P. Y. Hung, T. Rhoad, B. Foran, and A. C. Diebold, "Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model," Appl. Phys. Lett. 85, 1701-1703 (2004).
    [CrossRef]
  15. A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001).
    [CrossRef]
  16. G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000).
    [CrossRef]
  17. G. E. Jellison, Jr. and F. A. Modine, "Parameterization of the optical functions of amorphous materials in the interband region," Appl. Phys. Lett. 69, 371-373 (1996).
    [CrossRef]
  18. R. Jacobson, "Inhomogeneous and coevaporated homogeneous films for optical applications," in Physics of Thin Films, G.Hass, M.H.Francombe, and R.W.Hoffman, eds. (Academic, 1975), Vol. 8, pp. 51-97.
  19. S. H. Wemple, "Refractive-index behavior of amorphous semiconductors and glasses," Phys. Rev. B 7, 3767-3777 (1973).
    [CrossRef]
  20. M. A. Gaffar, A. A. El-Fadl, and S. B. Anooz, "Optical absorption spectra and related parameters of ammonium zinc chloride crystal in the antiferroelectric and commensurate phases," Cryst. Res. Technol. 38, 798-810 (2003).
    [CrossRef]
  21. S. H. Wemple and M. DiDomenico, Jr., "Optical dispersion and the structure of solids," Phys. Rev. Lett. 23, 1156-1160 (1969).
    [CrossRef]
  22. H. N. Yang, A. Chan, and G. C. Wang, "Examination of the multilevel diffraction model for interface roughness characterization by scanning tunneling microscopy," J. Appl. Phys. 74, 101-106 (1993).
    [CrossRef]
  23. Y. Chen and W. Huang, "Numerical simulation of the geometrical factors affecting surface roughness measurements by AFM," Meas. Sci. Technol. 15, 2005-2010 (2004).
    [CrossRef]
  24. Z. J. Liu, N. Jiang, Y. G. Shen, and Y. W. Mai, "Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films," J. Appl. Phys. 92, 3559-3563 (2002).
    [CrossRef]
  25. C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, "Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition," J. Appl. Phys. 95, 1460-1467 (2004).
    [CrossRef]
  26. A. Feldman, X. Ying, and E. N. Farabaugh, "Optical properties of mixed yttria-silica films," Appl. Opt. 28, 5229-5232 (1989).
    [CrossRef] [PubMed]
  27. A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structures and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 4, 2969-2974 (1886).
    [CrossRef]
  28. W. H. Koo, S. M. Jeong, S. H. Choi, H. K. Baik, S. J. Lee, and S. M. Lee, "Relationship between optical properties and microstructure of CeO2-SiO2 composite thin films," J. Vac. Sci. Technol. A 22, 2048-2051 (2004).
    [CrossRef]
  29. N. M. Ravindra and J. Narayan, "Optical properties of amorphous silicon and silicon dioxide," J. Appl. Phys. 60, 1139-1146 (1986).
    [CrossRef]

2005 (2)

H. Chen and W. Z. Shen, "Perspectives in the characteristics and applications of Tauc-Lorentz dielectric function model," Eur. Phys. J. B 43, 503-507 (2005).
[CrossRef]

A. V. Osipov, F. Schmitt, and P. Hess, "Real-time analysis of wetting-layer evolution and island nucleation using spectroscopic ellipsometry with Tauc-Lorentz parametrization," Thin Solid Films 472, 31-36 (2005).
[CrossRef]

2004 (5)

Y. Chen and W. Huang, "Numerical simulation of the geometrical factors affecting surface roughness measurements by AFM," Meas. Sci. Technol. 15, 2005-2010 (2004).
[CrossRef]

W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004).
[CrossRef]

J. Price, P. Y. Hung, T. Rhoad, B. Foran, and A. C. Diebold, "Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model," Appl. Phys. Lett. 85, 1701-1703 (2004).
[CrossRef]

C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, "Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition," J. Appl. Phys. 95, 1460-1467 (2004).
[CrossRef]

W. H. Koo, S. M. Jeong, S. H. Choi, H. K. Baik, S. J. Lee, and S. M. Lee, "Relationship between optical properties and microstructure of CeO2-SiO2 composite thin films," J. Vac. Sci. Technol. A 22, 2048-2051 (2004).
[CrossRef]

2003 (1)

M. A. Gaffar, A. A. El-Fadl, and S. B. Anooz, "Optical absorption spectra and related parameters of ammonium zinc chloride crystal in the antiferroelectric and commensurate phases," Cryst. Res. Technol. 38, 798-810 (2003).
[CrossRef]

2002 (3)

Y. J. Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B. H. Lee, and J. C. Lee, "Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties," Appl. Phys. Lett. 80, 1249-1251 (2002).
[CrossRef]

Z. J. Liu, N. Jiang, Y. G. Shen, and Y. W. Mai, "Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films," J. Appl. Phys. 92, 3559-3563 (2002).
[CrossRef]

B. von Blanckenhagen, D. Tonova, and J. Ullmann, "Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials," Appl. Opt. 41, 3137-3141 (2002).
[CrossRef] [PubMed]

2001 (3)

M. Kar, B. S. Verma, A. Basu, and R. Bhattacharyya, "Modeling of the refractive index and extinction coefficient of binary composite films," Appl. Opt. 40, 6301-6306 (2001).
[CrossRef]

H. Lee, I. Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I. S. Yang, "Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films," J. Appl. Phys. 90, 813-818 (2001).
[CrossRef]

A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001).
[CrossRef]

2000 (1)

G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

G. E. Jellison, Jr. and F. A. Modine, "Parameterization of the optical functions of amorphous materials in the interband region," Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

1993 (1)

H. N. Yang, A. Chan, and G. C. Wang, "Examination of the multilevel diffraction model for interface roughness characterization by scanning tunneling microscopy," J. Appl. Phys. 74, 101-106 (1993).
[CrossRef]

1989 (1)

1986 (1)

N. M. Ravindra and J. Narayan, "Optical properties of amorphous silicon and silicon dioxide," J. Appl. Phys. 60, 1139-1146 (1986).
[CrossRef]

1982 (1)

D. E. Aspnes, "Bounds on allowed values of the effective dielectric function of two-component composites at finite frequencies," Phys Rev. B 25, 1358-1361 (1982).
[CrossRef]

1973 (1)

S. H. Wemple, "Refractive-index behavior of amorphous semiconductors and glasses," Phys. Rev. B 7, 3767-3777 (1973).
[CrossRef]

1971 (1)

S. H. Wemple and M. DiDomenico, Jr., "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971).
[CrossRef]

1969 (1)

S. H. Wemple and M. DiDomenico, Jr., "Optical dispersion and the structure of solids," Phys. Rev. Lett. 23, 1156-1160 (1969).
[CrossRef]

1966 (1)

1963 (1)

R. Jacobsson, "Optical properties of a class of inhomogeneous thin films," Opt. Acta 10, 309-323 (1963).
[CrossRef]

1886 (1)

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structures and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 4, 2969-2974 (1886).
[CrossRef]

Anooz, S. B.

M. A. Gaffar, A. A. El-Fadl, and S. B. Anooz, "Optical absorption spectra and related parameters of ammonium zinc chloride crystal in the antiferroelectric and commensurate phases," Cryst. Res. Technol. 38, 798-810 (2003).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, "Bounds on allowed values of the effective dielectric function of two-component composites at finite frequencies," Phys Rev. B 25, 1358-1361 (1982).
[CrossRef]

Bae, B. S.

H. Lee, I. Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I. S. Yang, "Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films," J. Appl. Phys. 90, 813-818 (2001).
[CrossRef]

Baik, H. K.

W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004).
[CrossRef]

W. H. Koo, S. M. Jeong, S. H. Choi, H. K. Baik, S. J. Lee, and S. M. Lee, "Relationship between optical properties and microstructure of CeO2-SiO2 composite thin films," J. Vac. Sci. Technol. A 22, 2048-2051 (2004).
[CrossRef]

Basu, A.

Bhattacharyya, R.

Canterbury, J.

A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001).
[CrossRef]

Caughman, J. B.

G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000).
[CrossRef]

Chan, A.

H. N. Yang, A. Chan, and G. C. Wang, "Examination of the multilevel diffraction model for interface roughness characterization by scanning tunneling microscopy," J. Appl. Phys. 74, 101-106 (1993).
[CrossRef]

Chen, H.

H. Chen and W. Z. Shen, "Perspectives in the characteristics and applications of Tauc-Lorentz dielectric function model," Eur. Phys. J. B 43, 503-507 (2005).
[CrossRef]

Chen, Y.

Y. Chen and W. Huang, "Numerical simulation of the geometrical factors affecting surface roughness measurements by AFM," Meas. Sci. Technol. 15, 2005-2010 (2004).
[CrossRef]

Chism, W.

A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001).
[CrossRef]

Cho, Y. J.

Y. J. Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B. H. Lee, and J. C. Lee, "Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties," Appl. Phys. Lett. 80, 1249-1251 (2002).
[CrossRef]

Choi, M. K.

H. Lee, I. Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I. S. Yang, "Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films," J. Appl. Phys. 90, 813-818 (2001).
[CrossRef]

Choi, S. H.

W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004).
[CrossRef]

W. H. Koo, S. M. Jeong, S. H. Choi, H. K. Baik, S. J. Lee, and S. M. Lee, "Relationship between optical properties and microstructure of CeO2-SiO2 composite thin films," J. Vac. Sci. Technol. A 22, 2048-2051 (2004).
[CrossRef]

DiDomenico, M.

S. H. Wemple and M. DiDomenico, Jr., "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971).
[CrossRef]

S. H. Wemple and M. DiDomenico, Jr., "Optical dispersion and the structure of solids," Phys. Rev. Lett. 23, 1156-1160 (1969).
[CrossRef]

Diebold, A. C.

J. Price, P. Y. Hung, T. Rhoad, B. Foran, and A. C. Diebold, "Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model," Appl. Phys. Lett. 85, 1701-1703 (2004).
[CrossRef]

A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001).
[CrossRef]

Dobrowolski, J. A.

Ehrstein, J.

A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001).
[CrossRef]

Ehrstein, J. R.

Y. J. Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B. H. Lee, and J. C. Lee, "Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties," Appl. Phys. Lett. 80, 1249-1251 (2002).
[CrossRef]

El-Fadl, A. A.

M. A. Gaffar, A. A. El-Fadl, and S. B. Anooz, "Optical absorption spectra and related parameters of ammonium zinc chloride crystal in the antiferroelectric and commensurate phases," Cryst. Res. Technol. 38, 798-810 (2003).
[CrossRef]

Eres, G.

G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000).
[CrossRef]

Farabaugh, E. N.

A. Feldman, X. Ying, and E. N. Farabaugh, "Optical properties of mixed yttria-silica films," Appl. Opt. 28, 5229-5232 (1989).
[CrossRef] [PubMed]

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structures and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 4, 2969-2974 (1886).
[CrossRef]

Feldman, A.

A. Feldman, X. Ying, and E. N. Farabaugh, "Optical properties of mixed yttria-silica films," Appl. Opt. 28, 5229-5232 (1989).
[CrossRef] [PubMed]

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structures and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 4, 2969-2974 (1886).
[CrossRef]

Foran, B.

J. Price, P. Y. Hung, T. Rhoad, B. Foran, and A. C. Diebold, "Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model," Appl. Phys. Lett. 85, 1701-1703 (2004).
[CrossRef]

Gaffar, M. A.

M. A. Gaffar, A. A. El-Fadl, and S. B. Anooz, "Optical absorption spectra and related parameters of ammonium zinc chloride crystal in the antiferroelectric and commensurate phases," Cryst. Res. Technol. 38, 798-810 (2003).
[CrossRef]

Geohegan, D. B.

G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000).
[CrossRef]

Haller, W. K.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structures and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 4, 2969-2974 (1886).
[CrossRef]

Han, S. S.

H. Lee, I. Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I. S. Yang, "Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films," J. Appl. Phys. 90, 813-818 (2001).
[CrossRef]

Hess, P.

A. V. Osipov, F. Schmitt, and P. Hess, "Real-time analysis of wetting-layer evolution and island nucleation using spectroscopic ellipsometry with Tauc-Lorentz parametrization," Thin Solid Films 472, 31-36 (2005).
[CrossRef]

Huang, W.

Y. Chen and W. Huang, "Numerical simulation of the geometrical factors affecting surface roughness measurements by AFM," Meas. Sci. Technol. 15, 2005-2010 (2004).
[CrossRef]

Hung, P. Y.

J. Price, P. Y. Hung, T. Rhoad, B. Foran, and A. C. Diebold, "Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model," Appl. Phys. Lett. 85, 1701-1703 (2004).
[CrossRef]

Jacobson, R.

R. Jacobson, "Inhomogeneous and coevaporated homogeneous films for optical applications," in Physics of Thin Films, G.Hass, M.H.Francombe, and R.W.Hoffman, eds. (Academic, 1975), Vol. 8, pp. 51-97.

Jacobsson, R.

R. Jacobsson and J. O. Martensson, "Evaporated inhomogeneous thin films," Appl. Opt. 5, 29-34 (1966).
[CrossRef] [PubMed]

R. Jacobsson, "Optical properties of a class of inhomogeneous thin films," Opt. Acta 10, 309-323 (1963).
[CrossRef]

Jellison, G. E.

G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000).
[CrossRef]

G. E. Jellison, Jr. and F. A. Modine, "Parameterization of the optical functions of amorphous materials in the interband region," Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

Jeong, S. M.

W. H. Koo, S. M. Jeong, S. H. Choi, H. K. Baik, S. J. Lee, and S. M. Lee, "Relationship between optical properties and microstructure of CeO2-SiO2 composite thin films," J. Vac. Sci. Technol. A 22, 2048-2051 (2004).
[CrossRef]

Jeoung, S. M.

W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004).
[CrossRef]

Jiang, N.

Z. J. Liu, N. Jiang, Y. G. Shen, and Y. W. Mai, "Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films," J. Appl. Phys. 92, 3559-3563 (2002).
[CrossRef]

Jo, S. J.

W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004).
[CrossRef]

Kar, M.

Kim, I. Y.

H. Lee, I. Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I. S. Yang, "Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films," J. Appl. Phys. 90, 813-818 (2001).
[CrossRef]

Koo, W. H.

W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004).
[CrossRef]

W. H. Koo, S. M. Jeong, S. H. Choi, H. K. Baik, S. J. Lee, and S. M. Lee, "Relationship between optical properties and microstructure of CeO2-SiO2 composite thin films," J. Vac. Sci. Technol. A 22, 2048-2051 (2004).
[CrossRef]

Lee, B. H.

Y. J. Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B. H. Lee, and J. C. Lee, "Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties," Appl. Phys. Lett. 80, 1249-1251 (2002).
[CrossRef]

Lee, H.

H. Lee, I. Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I. S. Yang, "Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films," J. Appl. Phys. 90, 813-818 (2001).
[CrossRef]

Lee, J. C.

Y. J. Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B. H. Lee, and J. C. Lee, "Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties," Appl. Phys. Lett. 80, 1249-1251 (2002).
[CrossRef]

Lee, S. J.

W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004).
[CrossRef]

W. H. Koo, S. M. Jeong, S. H. Choi, H. K. Baik, S. J. Lee, and S. M. Lee, "Relationship between optical properties and microstructure of CeO2-SiO2 composite thin films," J. Vac. Sci. Technol. A 22, 2048-2051 (2004).
[CrossRef]

Lee, S. M.

W. H. Koo, S. M. Jeong, S. H. Choi, H. K. Baik, S. J. Lee, and S. M. Lee, "Relationship between optical properties and microstructure of CeO2-SiO2 composite thin films," J. Vac. Sci. Technol. A 22, 2048-2051 (2004).
[CrossRef]

Li, K. Y.

C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, "Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition," J. Appl. Phys. 95, 1460-1467 (2004).
[CrossRef]

Liu, Z. J.

C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, "Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition," J. Appl. Phys. 95, 1460-1467 (2004).
[CrossRef]

Z. J. Liu, N. Jiang, Y. G. Shen, and Y. W. Mai, "Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films," J. Appl. Phys. 92, 3559-3563 (2002).
[CrossRef]

Lowndes, D. H.

G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000).
[CrossRef]

Luo, J. B.

C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, "Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition," J. Appl. Phys. 95, 1460-1467 (2004).
[CrossRef]

Mai, Y. W.

Z. J. Liu, N. Jiang, Y. G. Shen, and Y. W. Mai, "Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films," J. Appl. Phys. 92, 3559-3563 (2002).
[CrossRef]

Martensson, J. O.

Merkulov, V. I.

G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000).
[CrossRef]

Modine, F. A.

G. E. Jellison, Jr. and F. A. Modine, "Parameterization of the optical functions of amorphous materials in the interband region," Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

Narayan, J.

N. M. Ravindra and J. Narayan, "Optical properties of amorphous silicon and silicon dioxide," J. Appl. Phys. 60, 1139-1146 (1986).
[CrossRef]

Nguyen, N.

A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001).
[CrossRef]

Nguyen, N. V.

Y. J. Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B. H. Lee, and J. C. Lee, "Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties," Appl. Phys. Lett. 80, 1249-1251 (2002).
[CrossRef]

Osipov, A. V.

A. V. Osipov, F. Schmitt, and P. Hess, "Real-time analysis of wetting-layer evolution and island nucleation using spectroscopic ellipsometry with Tauc-Lorentz parametrization," Thin Solid Films 472, 31-36 (2005).
[CrossRef]

Price, J.

J. Price, P. Y. Hung, T. Rhoad, B. Foran, and A. C. Diebold, "Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model," Appl. Phys. Lett. 85, 1701-1703 (2004).
[CrossRef]

Puretzky, A. A.

G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000).
[CrossRef]

Ravindra, N. M.

N. M. Ravindra and J. Narayan, "Optical properties of amorphous silicon and silicon dioxide," J. Appl. Phys. 60, 1139-1146 (1986).
[CrossRef]

Rhoad, T.

J. Price, P. Y. Hung, T. Rhoad, B. Foran, and A. C. Diebold, "Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model," Appl. Phys. Lett. 85, 1701-1703 (2004).
[CrossRef]

Richter, C.

A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001).
[CrossRef]

Richter, C. A.

Y. J. Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B. H. Lee, and J. C. Lee, "Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties," Appl. Phys. Lett. 80, 1249-1251 (2002).
[CrossRef]

Sahoo, N. K.

Sanders, D. M.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structures and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 4, 2969-2974 (1886).
[CrossRef]

Schmitt, F.

A. V. Osipov, F. Schmitt, and P. Hess, "Real-time analysis of wetting-layer evolution and island nucleation using spectroscopic ellipsometry with Tauc-Lorentz parametrization," Thin Solid Films 472, 31-36 (2005).
[CrossRef]

Shapiro, A. P.

Shen, W. Z.

H. Chen and W. Z. Shen, "Perspectives in the characteristics and applications of Tauc-Lorentz dielectric function model," Eur. Phys. J. B 43, 503-507 (2005).
[CrossRef]

Shen, Y. G.

C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, "Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition," J. Appl. Phys. 95, 1460-1467 (2004).
[CrossRef]

Z. J. Liu, N. Jiang, Y. G. Shen, and Y. W. Mai, "Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films," J. Appl. Phys. 92, 3559-3563 (2002).
[CrossRef]

Song, K. M.

W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004).
[CrossRef]

Stempniak, R. A.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structures and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 4, 2969-2974 (1886).
[CrossRef]

Sullivan, B. T.

Tikhonravov, A. V.

Tonova, D.

Trubetskov, M. K.

Ullmann, J.

Verma, B. S.

von Blanckenhagen, B.

Wang, G. C.

H. N. Yang, A. Chan, and G. C. Wang, "Examination of the multilevel diffraction model for interface roughness characterization by scanning tunneling microscopy," J. Appl. Phys. 74, 101-106 (1993).
[CrossRef]

Weintraub, C.

A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001).
[CrossRef]

Wemple, S. H.

S. H. Wemple, "Refractive-index behavior of amorphous semiconductors and glasses," Phys. Rev. B 7, 3767-3777 (1973).
[CrossRef]

S. H. Wemple and M. DiDomenico, Jr., "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971).
[CrossRef]

S. H. Wemple and M. DiDomenico, Jr., "Optical dispersion and the structure of solids," Phys. Rev. Lett. 23, 1156-1160 (1969).
[CrossRef]

Yang, H. N.

H. N. Yang, A. Chan, and G. C. Wang, "Examination of the multilevel diffraction model for interface roughness characterization by scanning tunneling microscopy," J. Appl. Phys. 74, 101-106 (1993).
[CrossRef]

Yang, I. S.

H. Lee, I. Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I. S. Yang, "Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films," J. Appl. Phys. 90, 813-818 (2001).
[CrossRef]

Ying, X.

Zhang, C. H.

C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, "Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition," J. Appl. Phys. 95, 1460-1467 (2004).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (3)

Y. J. Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B. H. Lee, and J. C. Lee, "Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties," Appl. Phys. Lett. 80, 1249-1251 (2002).
[CrossRef]

J. Price, P. Y. Hung, T. Rhoad, B. Foran, and A. C. Diebold, "Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model," Appl. Phys. Lett. 85, 1701-1703 (2004).
[CrossRef]

G. E. Jellison, Jr. and F. A. Modine, "Parameterization of the optical functions of amorphous materials in the interband region," Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

Cryst. Res. Technol. (1)

M. A. Gaffar, A. A. El-Fadl, and S. B. Anooz, "Optical absorption spectra and related parameters of ammonium zinc chloride crystal in the antiferroelectric and commensurate phases," Cryst. Res. Technol. 38, 798-810 (2003).
[CrossRef]

Eur. Phys. J. B (1)

H. Chen and W. Z. Shen, "Perspectives in the characteristics and applications of Tauc-Lorentz dielectric function model," Eur. Phys. J. B 43, 503-507 (2005).
[CrossRef]

J. Appl. Phys. (5)

H. N. Yang, A. Chan, and G. C. Wang, "Examination of the multilevel diffraction model for interface roughness characterization by scanning tunneling microscopy," J. Appl. Phys. 74, 101-106 (1993).
[CrossRef]

H. Lee, I. Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I. S. Yang, "Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films," J. Appl. Phys. 90, 813-818 (2001).
[CrossRef]

Z. J. Liu, N. Jiang, Y. G. Shen, and Y. W. Mai, "Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films," J. Appl. Phys. 92, 3559-3563 (2002).
[CrossRef]

C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, "Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition," J. Appl. Phys. 95, 1460-1467 (2004).
[CrossRef]

N. M. Ravindra and J. Narayan, "Optical properties of amorphous silicon and silicon dioxide," J. Appl. Phys. 60, 1139-1146 (1986).
[CrossRef]

J. Vac. Sci. Technol. A (2)

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structures and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 4, 2969-2974 (1886).
[CrossRef]

W. H. Koo, S. M. Jeong, S. H. Choi, H. K. Baik, S. J. Lee, and S. M. Lee, "Relationship between optical properties and microstructure of CeO2-SiO2 composite thin films," J. Vac. Sci. Technol. A 22, 2048-2051 (2004).
[CrossRef]

Mater. Sci. Semicond. Process. (1)

A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Chen and W. Huang, "Numerical simulation of the geometrical factors affecting surface roughness measurements by AFM," Meas. Sci. Technol. 15, 2005-2010 (2004).
[CrossRef]

Opt. Acta (1)

R. Jacobsson, "Optical properties of a class of inhomogeneous thin films," Opt. Acta 10, 309-323 (1963).
[CrossRef]

Phys Rev. B (1)

D. E. Aspnes, "Bounds on allowed values of the effective dielectric function of two-component composites at finite frequencies," Phys Rev. B 25, 1358-1361 (1982).
[CrossRef]

Phys. Rev. B (2)

S. H. Wemple and M. DiDomenico, Jr., "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971).
[CrossRef]

S. H. Wemple, "Refractive-index behavior of amorphous semiconductors and glasses," Phys. Rev. B 7, 3767-3777 (1973).
[CrossRef]

Phys. Rev. Lett. (1)

S. H. Wemple and M. DiDomenico, Jr., "Optical dispersion and the structure of solids," Phys. Rev. Lett. 23, 1156-1160 (1969).
[CrossRef]

Thin Solid Films (3)

A. V. Osipov, F. Schmitt, and P. Hess, "Real-time analysis of wetting-layer evolution and island nucleation using spectroscopic ellipsometry with Tauc-Lorentz parametrization," Thin Solid Films 472, 31-36 (2005).
[CrossRef]

W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004).
[CrossRef]

G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000).
[CrossRef]

Other (1)

R. Jacobson, "Inhomogeneous and coevaporated homogeneous films for optical applications," in Physics of Thin Films, G.Hass, M.H.Francombe, and R.W.Hoffman, eds. (Academic, 1975), Vol. 8, pp. 51-97.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) Nonlinear refractive index of a Gd2O3: SiO2 composite film with 90:10 composition analyzed through phase-modulated ellipsometry using multilayer TL modeling depicting eight sublayers.

Fig. 2
Fig. 2

(Color online) Nonlinear refractive index of a composite film with 40:60 Gd2O3:SiO2 compositions analyzed through phase-modulated ellipsometry using multilayer TL modeling depicting eight sublayers.

Fig. 3
Fig. 3

(Color online) Experimental ellipsometric Ψ and Δ plot depicting nonlinear optical properties of the composite film and its modeling through multilayer TL parameterization.

Fig. 4
Fig. 4

(Color online) Spectral mean refractive indices of various Ga2O3:SiO2 composite thin films prepared with various composition ratios from 90:10 to 10:90.

Fig. 5
Fig. 5

(Color online) Depiction of superior spectral refractive index in a composite film with 90:10 and 80:20 compositions over the pure Gd2O3 (100%) thin film.

Fig. 6
Fig. 6

(Color online) Three-dimensional plot of the spectral refractive index of the Gd2O3:SiO2 thin films depicting the superior refractive index of certain composite films (in the range of 90:10 to 70:30) over the pure gadolinia film.

Fig. 7
Fig. 7

(Color online) (a) Morphological and (b) 3D plot of the ACF of pure gadolinia film. The autocorrelation surface plot distinctly depicts an intense oscillatory behavior implying the presence of mounds or aggregates in the microstructure.

Fig. 8
Fig. 8

(Color online) (a) Morphological and (b) 3D plot of the ACF of composite thin film with the composition of 90:10. The autocorrelation surface plot prominently displays a relatively isotropic and smooth morphological property.

Fig. 9
Fig. 9

(Color online) Two-dimensional ACF data computed from the topographic measurements of (a) pure gadolinia film and (b) codeposited composite film displaying the dominance of mound structures and self-affine amorphous structures.

Fig. 10
Fig. 10

(Color online) Plot of the HHCF for pure and composite gadolinia film in which the pure film had a mound structural growth, whereas the composite film had a self-affine structure. This feature is also reflected in the α value, where the pure gadolinia displayed a value of 1.0 in contrast to a smaller value of 0.797 for the composite film.

Fig. 11
Fig. 11

(Color online) Variation of bandgap and refractive index versus compositions depicting a monotonic increase of the bandgap values with respect to the compositions. Such behavior distinctly represents the appropriate compositions or stoichiometry of the composite film. The refractive index, however, demonstrates initial increase and subsequent decrease with respect to the compositions.

Fig. 12
Fig. 12

(Color online) Plot of refractive index (n) and the ordered structure parameter (Ed ) with respect to compositions in composite film depicting a strong functional correlation in their evolution. Such a result indicated that the film with superior refractive indices has an ordered microstructure.

Tables (1)

Tables Icon

Table 1 Tauc–Lorentz Fitting Parameters for the Various Codeposited Composite Gd2O3:SiO2 Films as Well as Pure Gd2O3 Film a

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ε 2 TL ( E ) = [ A E 0 C ( E E g ) 2 ( E 2 E 0     2 ) + C 2 E 2 1 E ] , E > E g ,
= 0 ,                                                                               E E g .
ε 1 = ε ( ) + 2 π P E 2 ξ ε 2 ( ξ ) ξ 2 E 2  d ξ ,
ε = 1 2 { ε g + c s 1 L ( ε s ε g ) ε s L 1 L + [ ( ε s L 1 L ε g c s 1 L ( ε s ε g ) ) 2 + 4 ε g ε s L 1 L ] 1 / 2 } .
n ^ f = n f + i k f = ε ^ ( E ) ,
ε ^ = ε 1 + i ε 2 .
n f ( E ) = { [ ( ε 1     2 + ε 2     2 ) 1 / 2 + ε 1 ] / 2 } 1 / 2 ,
k f ( E ) = { [ ( ε 1     2 + ε 2     2 ) 1 / 2 ε 1 ] / 2 } 1 / 2 ,
α ( E ) = 4 π k f ( E ) λ = ( 2 E / c ) { [ ( ε 1     2 + ε 2     2 ) 1 / 2 ε 1 ] / 2 } 1 / 2 .
ε r     2 ( E ) = 1 + F E 0     2 E 2 ,
E d = F E 0 .
ε r ( E ) = n 2 ( E ) = 1 + E d E 0 E 0     2 E 2 .
A x ( τ x ) = 1 N ( M m ) l = 1 N n = 1 M m Z n + m , l Z n , l .
H x ( r x ) = 1 N ( M m ) l = 1 N n = 1 M m ( Z n + m , l Z n , l ) 2 .
H ( r ) = 2 w 2 { 1 exp [ ( r / ξ ) 2 α ] } ,

Metrics