Abstract

We consider reconstruction of signals by a direct method for the solution of the discrete Fourier system. We note that the reconstruction of a time-limited signal can be simply realized by using only either the real part or the imaginary part of the discrete Fourier transform (DFT) matrix. Therefore, based on the study of the special structure of the real and imaginary parts of the discrete Fourier matrix, we propose a fast direct method for the signal reconstruction problem, which utilizes the numerically truncated singular value decomposition. The method enables us to recover the original signal in a stable way from the frequency information, which may be corrupted by noise and∕or some missing data. The classical inverse Fourier transform cannot be applied directly in the latter situation. The pivotal point of the reconstruction is the explicit computation of the singular value decomposition of the real part of the DFT for any order. Numerical experiments for 1D and 2D signal reconstruction and image restoration are given.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Direct method for superresolution

David O. Walsh and Pamela A. Nielsen-Delaney
J. Opt. Soc. Am. A 11(2) 572-579 (1994)

Convex projections algorithm for restoration of limited-angle chromotomographic images

Andrzej K. Brodzik and Jonathan M. Mooney
J. Opt. Soc. Am. A 16(2) 246-257 (1999)

Generalized synthetic discriminant functions

Z. Bahri and B. V. K. Vijaya Kumar
J. Opt. Soc. Am. A 5(4) 562-571 (1988)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (21)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (85)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription