Abstract

A surface plasmon resonance (SPR) sensing technique based on polarization interferometry and angle modulation is presented. Its sensitivity is not a direct function of variation of reflection intensity, nor of phase shift. Rather, it is a function of the complex reflection coefficient. A three times standard deviation detection limit of 5.1×10-7 refractive index units in a 2Hz bandwidth is obtained with our experimental setup. A theoretical analysis shows that this technique can provide a wide linear measurement range. Moreover, the sensitivity is insensitive to the thickness of gold films over approximately 5nm. This SPR sensing technique is suitable for physical, chemical, and biological research.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  2. G. Margheri, A. Mannoni, and F. Quercioli, "High-resolution angular and displacement sensing based on the excitation of surface plasma waves," Appl. Opt. 36, 4521-4525 (1997).
    [CrossRef] [PubMed]
  3. J. Shi, Z. Q. Cao, J. Zhu, and Q. S. Shen, "Displacement measurement in real time using the attenuated total reflection technique," Appl. Phys. Lett. 84, 3253-3255 (2004).
    [CrossRef]
  4. M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of a surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
    [CrossRef]
  5. H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
    [CrossRef]
  6. S. Miwa and T. Arakawa, "Selective gas detection by means of surface plasmon resonance sensors," Thin Solid Films 281-282, 466-468 (1996).
    [CrossRef]
  7. G. J. Ashwell and M. P. S. Roberts, "Highly selective surface plasmon resonance sensor for NO2," Electron. Lett. 32, 2089-2091 (1996).
    [CrossRef]
  8. B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance—how it all started," Biosens. Bioelectron. 10, i-ix (1995).
    [CrossRef] [PubMed]
  9. D. J. Monk and D. R. Walt, "Optical fiber-based biosensors," Anal. Bioanal. Chem. 379, 931-945 (2004).
    [CrossRef] [PubMed]
  10. R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," J. Mol. Recognit. 17, 151-161 (2004).
    [CrossRef] [PubMed]
  11. C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, "High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
    [CrossRef]
  12. H. P. Ho, W. W. Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 73, 3534-3539 (2002).
    [CrossRef]
  13. S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sens. Actuators B 35-36, 187-191 (1996).
    [CrossRef]
  14. S. Shen, T. Liu, and J. H. Guo, "Optical phase-shift detection of surface plasmon resonance," Appl. Opt. 37, 1747-1751 (1998).
    [CrossRef]
  15. S. Y. Wu, H. P. Ho, W. C. Law, and C. Lin, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004).
    [CrossRef] [PubMed]
  16. C. M. Wu and M. C. Pao, "Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection," Opt. Express 12, 3509-3514 (2004).
    [CrossRef] [PubMed]
  17. J. H. Guo, Z. M. Zhu, and W. M. Deng, "Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation," Appl. Opt. 38, 6550-6555 (1999).
    [CrossRef]
  18. A. A. Kruchinin and Y. G. Vlasov, "Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor," Sens. Actuators B 30, 77-80 (1996).
    [CrossRef]
  19. A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, "Phase-polarization contrast for surface plasmon resonance biosensors," Biosens. Bioelectron. 13, 1263-1269 (1998).
    [CrossRef]
  20. J. Homola and S. S. Yee, "Novel polarization control scheme for spectral surface plasmon resonance sensors," Sens. Actuators B 51, 331-339 (1998).
    [CrossRef]
  21. J. C. Owens, "Optical refractive index of air: dependence on pressure, temperature and composition," Appl. Opt. 6, 51-59 (1967).
    [CrossRef] [PubMed]
  22. E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).
  23. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

2004 (6)

J. Shi, Z. Q. Cao, J. Zhu, and Q. S. Shen, "Displacement measurement in real time using the attenuated total reflection technique," Appl. Phys. Lett. 84, 3253-3255 (2004).
[CrossRef]

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

D. J. Monk and D. R. Walt, "Optical fiber-based biosensors," Anal. Bioanal. Chem. 379, 931-945 (2004).
[CrossRef] [PubMed]

R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," J. Mol. Recognit. 17, 151-161 (2004).
[CrossRef] [PubMed]

S. Y. Wu, H. P. Ho, W. C. Law, and C. Lin, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004).
[CrossRef] [PubMed]

C. M. Wu and M. C. Pao, "Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection," Opt. Express 12, 3509-3514 (2004).
[CrossRef] [PubMed]

2003 (1)

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, "High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

2002 (1)

H. P. Ho, W. W. Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 73, 3534-3539 (2002).
[CrossRef]

1999 (2)

1998 (3)

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, "Phase-polarization contrast for surface plasmon resonance biosensors," Biosens. Bioelectron. 13, 1263-1269 (1998).
[CrossRef]

J. Homola and S. S. Yee, "Novel polarization control scheme for spectral surface plasmon resonance sensors," Sens. Actuators B 51, 331-339 (1998).
[CrossRef]

S. Shen, T. Liu, and J. H. Guo, "Optical phase-shift detection of surface plasmon resonance," Appl. Opt. 37, 1747-1751 (1998).
[CrossRef]

1997 (1)

1996 (5)

M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of a surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
[CrossRef]

S. Miwa and T. Arakawa, "Selective gas detection by means of surface plasmon resonance sensors," Thin Solid Films 281-282, 466-468 (1996).
[CrossRef]

G. J. Ashwell and M. P. S. Roberts, "Highly selective surface plasmon resonance sensor for NO2," Electron. Lett. 32, 2089-2091 (1996).
[CrossRef]

A. A. Kruchinin and Y. G. Vlasov, "Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor," Sens. Actuators B 30, 77-80 (1996).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sens. Actuators B 35-36, 187-191 (1996).
[CrossRef]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance—how it all started," Biosens. Bioelectron. 10, i-ix (1995).
[CrossRef] [PubMed]

1968 (1)

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

1967 (1)

Arakawa, T.

S. Miwa and T. Arakawa, "Selective gas detection by means of surface plasmon resonance sensors," Thin Solid Films 281-282, 466-468 (1996).
[CrossRef]

Ashwell, G. J.

G. J. Ashwell and M. P. S. Roberts, "Highly selective surface plasmon resonance sensor for NO2," Electron. Lett. 32, 2089-2091 (1996).
[CrossRef]

Beloglazov, A. A.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, "Phase-polarization contrast for surface plasmon resonance biosensors," Biosens. Bioelectron. 13, 1263-1269 (1998).
[CrossRef]

Cao, Z. Q.

J. Shi, Z. Q. Cao, J. Zhu, and Q. S. Shen, "Displacement measurement in real time using the attenuated total reflection technique," Appl. Phys. Lett. 84, 3253-3255 (2004).
[CrossRef]

Chang, L. B.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, "High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

Chang, R.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Chen, C. M.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Chiang, H. P.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Deng, W. M.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Groger, H.

M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of a surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
[CrossRef]

Guo, J. H.

Ho, H. P.

S. Y. Wu, H. P. Ho, W. C. Law, and C. Lin, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004).
[CrossRef] [PubMed]

H. P. Ho, W. W. Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 73, 3534-3539 (2002).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola and S. S. Yee, "Novel polarization control scheme for spectral surface plasmon resonance sensors," Sens. Actuators B 51, 331-339 (1998).
[CrossRef]

Jen, S. U.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Jian, Z. C.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, "High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

Joe, S. F.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, "High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

Johnston, K. S.

S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sens. Actuators B 35-36, 187-191 (1996).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, "Phase-polarization contrast for surface plasmon resonance biosensors," Biosens. Bioelectron. 13, 1263-1269 (1998).
[CrossRef]

Karlsson, R.

R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," J. Mol. Recognit. 17, 151-161 (2004).
[CrossRef] [PubMed]

Kochergin, V. E.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, "Phase-polarization contrast for surface plasmon resonance biosensors," Biosens. Bioelectron. 13, 1263-1269 (1998).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Kruchinin, A. A.

A. A. Kruchinin and Y. G. Vlasov, "Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor," Sens. Actuators B 30, 77-80 (1996).
[CrossRef]

Lam, W. W.

H. P. Ho, W. W. Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 73, 3534-3539 (2002).
[CrossRef]

Law, W. C.

Leung, P. T.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance—how it all started," Biosens. Bioelectron. 10, i-ix (1995).
[CrossRef] [PubMed]

Lin, C.

Liu, T.

Lundstrom, I.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance—how it all started," Biosens. Bioelectron. 10, i-ix (1995).
[CrossRef] [PubMed]

Mannoni, A.

Margheri, G.

Miwa, S.

S. Miwa and T. Arakawa, "Selective gas detection by means of surface plasmon resonance sensors," Thin Solid Films 281-282, 466-468 (1996).
[CrossRef]

Monk, D. J.

D. J. Monk and D. R. Walt, "Optical fiber-based biosensors," Anal. Bioanal. Chem. 379, 931-945 (2004).
[CrossRef] [PubMed]

Nelson, S. G.

S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sens. Actuators B 35-36, 187-191 (1996).
[CrossRef]

Nikitin, P. I.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, "Phase-polarization contrast for surface plasmon resonance biosensors," Biosens. Bioelectron. 13, 1263-1269 (1998).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance—how it all started," Biosens. Bioelectron. 10, i-ix (1995).
[CrossRef] [PubMed]

Owens, J. C.

Pao, M. C.

Quercioli, F.

Raether, H.

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Roberts, M. P. S.

G. J. Ashwell and M. P. S. Roberts, "Highly selective surface plasmon resonance sensor for NO2," Electron. Lett. 32, 2089-2091 (1996).
[CrossRef]

Shen, Q. S.

J. Shi, Z. Q. Cao, J. Zhu, and Q. S. Shen, "Displacement measurement in real time using the attenuated total reflection technique," Appl. Phys. Lett. 84, 3253-3255 (2004).
[CrossRef]

Shen, S.

Shi, J.

J. Shi, Z. Q. Cao, J. Zhu, and Q. S. Shen, "Displacement measurement in real time using the attenuated total reflection technique," Appl. Phys. Lett. 84, 3253-3255 (2004).
[CrossRef]

Srivastava, R.

M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of a surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
[CrossRef]

Su, S. Y.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Tsai, D. P.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Vlasov, Y. G.

A. A. Kruchinin and Y. G. Vlasov, "Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor," Sens. Actuators B 30, 77-80 (1996).
[CrossRef]

Walt, D. R.

D. J. Monk and D. R. Walt, "Optical fiber-based biosensors," Anal. Bioanal. Chem. 379, 931-945 (2004).
[CrossRef] [PubMed]

Weiss, M. N.

M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of a surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
[CrossRef]

Wu, C. M.

C. M. Wu and M. C. Pao, "Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection," Opt. Express 12, 3509-3514 (2004).
[CrossRef] [PubMed]

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, "High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

Wu, J. C.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Wu, S. Y.

S. Y. Wu, H. P. Ho, W. C. Law, and C. Lin, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004).
[CrossRef] [PubMed]

H. P. Ho, W. W. Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 73, 3534-3539 (2002).
[CrossRef]

Wu, Y. J.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola and S. S. Yee, "Novel polarization control scheme for spectral surface plasmon resonance sensors," Sens. Actuators B 51, 331-339 (1998).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sens. Actuators B 35-36, 187-191 (1996).
[CrossRef]

Yeh, H. T.

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Zhu, J.

J. Shi, Z. Q. Cao, J. Zhu, and Q. S. Shen, "Displacement measurement in real time using the attenuated total reflection technique," Appl. Phys. Lett. 84, 3253-3255 (2004).
[CrossRef]

Zhu, Z. M.

Anal. Bioanal. Chem. (1)

D. J. Monk and D. R. Walt, "Optical fiber-based biosensors," Anal. Bioanal. Chem. 379, 931-945 (2004).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. Shi, Z. Q. Cao, J. Zhu, and Q. S. Shen, "Displacement measurement in real time using the attenuated total reflection technique," Appl. Phys. Lett. 84, 3253-3255 (2004).
[CrossRef]

Biosens. Bioelectron. (2)

B. Liedberg, C. Nylander, and I. Lundstrom, "Biosensing with surface plasmon resonance—how it all started," Biosens. Bioelectron. 10, i-ix (1995).
[CrossRef] [PubMed]

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, "Phase-polarization contrast for surface plasmon resonance biosensors," Biosens. Bioelectron. 13, 1263-1269 (1998).
[CrossRef]

Electron. Lett. (2)

G. J. Ashwell and M. P. S. Roberts, "Highly selective surface plasmon resonance sensor for NO2," Electron. Lett. 32, 2089-2091 (1996).
[CrossRef]

M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of a surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
[CrossRef]

J. Mol. Recognit. (1)

R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," J. Mol. Recognit. 17, 151-161 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, "Surface plasmon resonance monitoring of temperature via phase measurement," Opt. Commun. 241, 409-418 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

H. P. Ho, W. W. Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 73, 3534-3539 (2002).
[CrossRef]

Sens. Actuators B (5)

S. G. Nelson, K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sens. Actuators B 35-36, 187-191 (1996).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

A. A. Kruchinin and Y. G. Vlasov, "Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor," Sens. Actuators B 30, 77-80 (1996).
[CrossRef]

J. Homola and S. S. Yee, "Novel polarization control scheme for spectral surface plasmon resonance sensors," Sens. Actuators B 51, 331-339 (1998).
[CrossRef]

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, "High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

Thin Solid Films (1)

S. Miwa and T. Arakawa, "Selective gas detection by means of surface plasmon resonance sensors," Thin Solid Films 281-282, 466-468 (1996).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968).

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental scheme for the measurement of refractive index. M, mirror; PZT, piezoelectric transducer; P 1 , P 2 , polarizer; SPR, surface plasmon resonance configuration; Pressure Ctr, pressure controlling system; QWP, quarter-wave plate; D, photon detector; SG, signal generator; Lock-in, lock-in amplifier; PC, personal computer.

Fig. 2
Fig. 2

Intensity contrasts under p-polarization condition (a) and under polarization interferometry condition (b). The incident wavelength λ = 632.8 nm , the incident angle θ = 46 ° , RI of the prism n prism = 1.515 , and the dielectric constant of gold film ε gold = - 10.98 + i 1.45 .

Fig. 3
Fig. 3

Lock-in output as a function of the difference between air pressure in the cell and atmosphere.

Fig. 4
Fig. 4

Lock-in output in 200 s when the pressure is stable. The three times standard deviation δ V is 4.08 × 10 - 2 V .

Fig. 5
Fig. 5

Lock-in output in 30 min when the pressure is stable. The peak-to-peak value of the voltage is 0.111 V .

Fig. 6
Fig. 6

Lock-in output in 200 s with p-polarization incident light, i.e., without polarization interferometry. The three times standard deviation is 0.573 V .

Fig. 7
Fig. 7

For a prism–gold–gas SPR sensor, theory simulation of the locus of the p-polarization reflection coefficient on the complex plane. The incident angle θ = 46 ° , the incident wavelength λ = 632.8 nm , RI scanning scope n = 1.0 1.08 RIU, and RI scanning step Δ n = 2 × 10 - 3 RIU. r p 0 and r p ( n ) is the amplitude of reflection coefficient at the working point and where RI is n. The arc length Δ r ˜ p equals Δ r p ( ϕ p - ϕ p 0 ) + r p Δϕ p .

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 ( cos β sin β ) ,
J SPR = [ r p exp ( i ϕ p ) 0 0 r s exp ( i ϕ s ) ] ,
J QWP = 1 2 [ 1 i i 1 ] ,
J P 2 = [ cos 2 γ sin γ cos γ sin γ cos γ sin 2 γ ] ,
E out = J P 2 J QWP J SPR E 0 ( cos β sin β ) .
I out = E out E out * = 1 2 I 0 [ r p 2 cos 2 β + 2 r p cos β sin β cos ( 2 γ + ϕ p ϕ s - π 2 ) + sin 2 β ] ,
I out = 1 2 I 0 [ r p 2 cos 2 β + 2 r p cos β sin β cos ( 2 γ 0 + ϕ p - ϕ s 0 + M sin ω t - π 2 ) + sin 2 β ] ,
I ω ( n ) = 1 2 I 0 r p ( n ) sin ( 2 β ) [ ϕ p ( n ) - ϕ p 0 ] M sin ( ω t ) .
I ω ( n ) n = 1 2 I 0 sin ( 2 β ) [ r p ( n ) n [ ϕ p ( n ) - ϕ p 0 ] + r p ( n ) ϕ p ( n ) n ] M sin ( ω t ) .
δ n = Δ n Δ V δ V .
r ˜ q = r 01 q + r 12 q exp ( 2 i k 1 z d ) 1 + r 01 q r 12 q exp ( 2 i k 1 z d ) , q = p , s ,
r i , i + 1 q = X i q - X i + 1 q X i q + X i + 1 q , i = 0 , 1 ,
X i p = ε i k i z , X i s = k i z ,
k i z = ω 0 c ε i - ε 0 sin 2 θ ,
r ˜ p n = r p n ( ϕ p - ϕ p 0 ) + r p ϕ p n ,

Metrics