Abstract

We describe a multidimensional optical sensor and imaging system (MOSIS). Using a time-multiplexing, polarimetric, and multispectral imaging system, we are able to reconstruct a fully integrated multidimensional scene. Image fusion is used to integrate the multidimensional images. The fused image contains more information than the single two-dimensional and three-dimensional (3D) images. The multidimensional imaging system utilizes polarimetric imaging, multispectral imaging, 3D integral imaging with time and space multiplexing, and 3D image-fusion techniques to reconstruct the multidimensionally integrated scene. Optical experiments and computer simulations are presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).
  2. S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE, 2001).
  3. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  5. G. Lippmann, "La photographic intergrale," C. R. Acad. Sci. 146, 446-451 (1908).
  6. H. E. Ives, "Optical properties of a Lipmann lenticulated sheet," J. Opt. Soc. Am. 21, 171-176 (1931).
    [CrossRef]
  7. N. Davis, M. McCormick, and L. Yang, "Three-dimensional imaging systems: a new development," Appl. Opt. 27, 4520-4528 (1988).
    [CrossRef]
  8. J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003).
    [CrossRef]
  9. B. Lee, S.-W. Min, and B. Javidi, "Theoretical analysis for three-dimensional integral imaging systems with double devices," Appl. Opt. 41, 4856-4865 (2002).
    [CrossRef] [PubMed]
  10. H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Opt. Lett. 26, 157-159 (2001).
    [CrossRef]
  11. Y. Frauel and B. Javidi, "Digital three-dimensional image correlation by use of computer-reconstructed integral imaging," Appl. Opt. 41, 5488-5496 (2002).
    [CrossRef] [PubMed]
  12. A. Stern and B. Javidi, "Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging," Appl. Opt. 42, 7036-7042 (2003).
    [CrossRef] [PubMed]
  13. S. Kishk and B. Javidi, "Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging," Opt. Express 11, 3528-3541 (2003).
    [CrossRef] [PubMed]
  14. C. B. Burckhardt, "Optimum parameters and resolution limitation of integral photography," J. Opt. Soc. Am. 58, 71-76 (1968).
    [CrossRef]
  15. T. Okoshi, "Optimum design and depth resolution of lens sheet and projection type three dimensional displays," Appl. Opt. 10, 2284-2291 (1971).
    [CrossRef] [PubMed]
  16. J.-Y. Son, V. V. Saveljev, J.-S. Kim, S.-S. Kim, and B. Javidi, "Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates," Appl. Opt. 43, 4985-4992 (2004).
    [CrossRef] [PubMed]
  17. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, "Analysis of resolution limitation of integral photography," J. Opt. Soc. Am. A 15, 2059-2065 (1998).
    [CrossRef]
  18. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, "Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays," Appl. Opt. 43, 5806-5813 (2004).
    [CrossRef] [PubMed]
  19. J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002).
    [CrossRef]
  20. S.-H. Hong and B. Javidi, "Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing," Opt. Express 12, 4579-4588 (2004).
    [CrossRef] [PubMed]
  21. O. Matoba and B. Javidi, "Three-dimensional polarimetric integral imaging," Opt. Lett. 29, 2375-2377 (2004).
    [CrossRef] [PubMed]
  22. P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, "Image reconstruction using electro-optic holography," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003 (IEEE, 2003), Vol. 1, pp. 172-173.
  23. Z. G. Ye and M. Dong, "Morphotropic domain structures and phase transitions in relaxor-based piezo-ferroelectric (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystal," J. Appl. Phys. 87, 2312-2319 (2000).
    [CrossRef]
  24. J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, "Domain configuration and crystal structure of Pb(Zn1/3Nb2/3)O3-5%PbTiO3 crystals as a function of the electric-field direction," J. Appl. Phys. 91, 4474-4478 (2002).
    [CrossRef]
  25. J. Davise, D. McNamara, D. M. Cottrell, and T. Sonhara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Opt. 39, 1549-1554 (2000).
    [CrossRef]
  26. F. Goudail, F. Galland, and Ph. Réfrégier, "A general framework for designing image processing algorithms for coherent polarimetric images," in Proceedings of IEEE International Conference on Image Processing (IEEE, 2003), pp. 153-156.
  27. J. E. Solomon, "Polarization imaging," Appl. Opt. 20, 1537-1544 (1981).
    [CrossRef] [PubMed]
  28. L. B. Wolff, "Polarization camera for computer vision with a beam splitter," J. Opt. Soc. Am. A 11, 2935-2945 (1994).
    [CrossRef]
  29. T. Setälä, M. Kaivola, and A. T. Friberg, "Degree of polarization in near fields of thermal sources: effects of surface waves," Phys. Rev. Lett. 88, 123902 (2002).
  30. J. Swoger, M. Martínez-Corral, J. Huisken, and E. H. K. Stelzer, "Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy," J. Opt. Soc. Am. A 19, 1910-1918 (2002).
    [CrossRef]
  31. F. Sadjadi and C. S. L. Chun, "Automatic detection of small objects from their infrared state-of-polarization vectors," Opt. Lett. 28, 531-533 (2003).
    [CrossRef] [PubMed]
  32. P. J. Burt and E. H. Adelson, "The Laplacian pyramid as a compact image code," IEEE Trans. Commun. 31, 532-540 (1983).
    [CrossRef]
  33. A. Mahalanobis, "Processing of multi-sensor data using correlation filters," in Algorithms, Devices, and Systems for Optical Information Processing II, B.Javidi and D.Psaltis, eds. Proc. SPIE 3466,56-64 (1998).
  34. F. Sadjadi, "Invariant algebra and the fusion of multi-spectral information," Inf. Fusion 3, 39-50 (2002).
    [CrossRef]
  35. F. Sadjadi, Selected Papers on Sensor and Data Fusion (SPIE, 1996).
  36. I. Daubechies, "Orthonormal bases of compactly supported wavelets," Commun. Pure Appl. Math. 41,906-996 (1988).
  37. S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Trans. Pattern Anal. Mach. Intell. 11, 674-693 (1989).
  38. J. S. Walker, A Primer on Wavelets and Their Scientific Applications (Chapman & Hall/CRC, 1999).
    [CrossRef]
  39. R. Hayden, G. Dalke, J. Henkel, and J. Bare, "Application of the IHS color transform to the processing of multi-sensor data and image enhancement," presented at the International Symposium on Remote Sensing of Arid and Semi-Arid Lands, (Environmental Research Institute of Michigan, 1982), pp. 599-616.
  40. P. Chavez, S. Sides, and J. Anderson, "Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic," Photogramm. Eng. Remote Sens. 57, 295-303 (1991).
  41. M. Kim, I. Dinstein, and L. Shaw, "A protopype filter design approach to pyramid generation," IEEE Trans. Pattern Anal. Mach. Intell. 15, 1233-1240 (1993).
    [CrossRef]

2004 (4)

2003 (4)

2002 (6)

2001 (1)

2000 (2)

J. Davise, D. McNamara, D. M. Cottrell, and T. Sonhara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Opt. 39, 1549-1554 (2000).
[CrossRef]

Z. G. Ye and M. Dong, "Morphotropic domain structures and phase transitions in relaxor-based piezo-ferroelectric (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystal," J. Appl. Phys. 87, 2312-2319 (2000).
[CrossRef]

1998 (1)

1994 (1)

1993 (1)

M. Kim, I. Dinstein, and L. Shaw, "A protopype filter design approach to pyramid generation," IEEE Trans. Pattern Anal. Mach. Intell. 15, 1233-1240 (1993).
[CrossRef]

1991 (1)

P. Chavez, S. Sides, and J. Anderson, "Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic," Photogramm. Eng. Remote Sens. 57, 295-303 (1991).

1988 (1)

1983 (1)

P. J. Burt and E. H. Adelson, "The Laplacian pyramid as a compact image code," IEEE Trans. Commun. 31, 532-540 (1983).
[CrossRef]

1981 (1)

1971 (1)

1968 (1)

1931 (1)

1908 (1)

G. Lippmann, "La photographic intergrale," C. R. Acad. Sci. 146, 446-451 (1908).

Adelson, E. H.

P. J. Burt and E. H. Adelson, "The Laplacian pyramid as a compact image code," IEEE Trans. Commun. 31, 532-540 (1983).
[CrossRef]

Ambs, P.

P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, "Image reconstruction using electro-optic holography," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003 (IEEE, 2003), Vol. 1, pp. 172-173.

Anderson, J.

P. Chavez, S. Sides, and J. Anderson, "Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic," Photogramm. Eng. Remote Sens. 57, 295-303 (1991).

Arimoto, H.

Bare, J.

R. Hayden, G. Dalke, J. Henkel, and J. Bare, "Application of the IHS color transform to the processing of multi-sensor data and image enhancement," presented at the International Symposium on Remote Sensing of Arid and Semi-Arid Lands, (Environmental Research Institute of Michigan, 1982), pp. 599-616.

Benton, S. A.

S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE, 2001).

Bigue, L.

P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, "Image reconstruction using electro-optic holography," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003 (IEEE, 2003), Vol. 1, pp. 172-173.

Binet, R.

P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, "Image reconstruction using electro-optic holography," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003 (IEEE, 2003), Vol. 1, pp. 172-173.

Burckhardt, C. B.

Burt, P. J.

P. J. Burt and E. H. Adelson, "The Laplacian pyramid as a compact image code," IEEE Trans. Commun. 31, 532-540 (1983).
[CrossRef]

Chavez, P.

P. Chavez, S. Sides, and J. Anderson, "Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic," Photogramm. Eng. Remote Sens. 57, 295-303 (1991).

Chun, C. S. L.

Colineau, J.

P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, "Image reconstruction using electro-optic holography," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003 (IEEE, 2003), Vol. 1, pp. 172-173.

Cottrell, D. M.

Dalke, G.

R. Hayden, G. Dalke, J. Henkel, and J. Bare, "Application of the IHS color transform to the processing of multi-sensor data and image enhancement," presented at the International Symposium on Remote Sensing of Arid and Semi-Arid Lands, (Environmental Research Institute of Michigan, 1982), pp. 599-616.

Daubechies, I.

I. Daubechies, "Orthonormal bases of compactly supported wavelets," Commun. Pure Appl. Math. 41,906-996 (1988).

Davis, N.

Davise, J.

Dinstein, I.

M. Kim, I. Dinstein, and L. Shaw, "A protopype filter design approach to pyramid generation," IEEE Trans. Pattern Anal. Mach. Intell. 15, 1233-1240 (1993).
[CrossRef]

Dong, M.

Z. G. Ye and M. Dong, "Morphotropic domain structures and phase transitions in relaxor-based piezo-ferroelectric (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystal," J. Appl. Phys. 87, 2312-2319 (2000).
[CrossRef]

Frauel, Y.

Friberg, A. T.

T. Setälä, M. Kaivola, and A. T. Friberg, "Degree of polarization in near fields of thermal sources: effects of surface waves," Phys. Rev. Lett. 88, 123902 (2002).

Galland, F.

F. Goudail, F. Galland, and Ph. Réfrégier, "A general framework for designing image processing algorithms for coherent polarimetric images," in Proceedings of IEEE International Conference on Image Processing (IEEE, 2003), pp. 153-156.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Goudail, F.

F. Goudail, F. Galland, and Ph. Réfrégier, "A general framework for designing image processing algorithms for coherent polarimetric images," in Proceedings of IEEE International Conference on Image Processing (IEEE, 2003), pp. 153-156.

Hayden, R.

R. Hayden, G. Dalke, J. Henkel, and J. Bare, "Application of the IHS color transform to the processing of multi-sensor data and image enhancement," presented at the International Symposium on Remote Sensing of Arid and Semi-Arid Lands, (Environmental Research Institute of Michigan, 1982), pp. 599-616.

Henkel, J.

R. Hayden, G. Dalke, J. Henkel, and J. Bare, "Application of the IHS color transform to the processing of multi-sensor data and image enhancement," presented at the International Symposium on Remote Sensing of Arid and Semi-Arid Lands, (Environmental Research Institute of Michigan, 1982), pp. 599-616.

Hong, K. S.

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, "Domain configuration and crystal structure of Pb(Zn1/3Nb2/3)O3-5%PbTiO3 crystals as a function of the electric-field direction," J. Appl. Phys. 91, 4474-4478 (2002).
[CrossRef]

Hong, S.-H.

Hoshino, H.

Huignard, J.-P.

P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, "Image reconstruction using electro-optic holography," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003 (IEEE, 2003), Vol. 1, pp. 172-173.

Huisken, J.

Isono, H.

Ives, H. E.

Jang, J.-S.

J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002).
[CrossRef]

Javidi, B.

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, "Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays," Appl. Opt. 43, 5806-5813 (2004).
[CrossRef] [PubMed]

S.-H. Hong and B. Javidi, "Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing," Opt. Express 12, 4579-4588 (2004).
[CrossRef] [PubMed]

O. Matoba and B. Javidi, "Three-dimensional polarimetric integral imaging," Opt. Lett. 29, 2375-2377 (2004).
[CrossRef] [PubMed]

J.-Y. Son, V. V. Saveljev, J.-S. Kim, S.-S. Kim, and B. Javidi, "Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates," Appl. Opt. 43, 4985-4992 (2004).
[CrossRef] [PubMed]

A. Stern and B. Javidi, "Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging," Appl. Opt. 42, 7036-7042 (2003).
[CrossRef] [PubMed]

S. Kishk and B. Javidi, "Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging," Opt. Express 11, 3528-3541 (2003).
[CrossRef] [PubMed]

J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

B. Lee, S.-W. Min, and B. Javidi, "Theoretical analysis for three-dimensional integral imaging systems with double devices," Appl. Opt. 41, 4856-4865 (2002).
[CrossRef] [PubMed]

Y. Frauel and B. Javidi, "Digital three-dimensional image correlation by use of computer-reconstructed integral imaging," Appl. Opt. 41, 5488-5496 (2002).
[CrossRef] [PubMed]

J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002).
[CrossRef]

H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Opt. Lett. 26, 157-159 (2001).
[CrossRef]

B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).

Kaivola, M.

T. Setälä, M. Kaivola, and A. T. Friberg, "Degree of polarization in near fields of thermal sources: effects of surface waves," Phys. Rev. Lett. 88, 123902 (2002).

Kim, J.-S.

Kim, M.

M. Kim, I. Dinstein, and L. Shaw, "A protopype filter design approach to pyramid generation," IEEE Trans. Pattern Anal. Mach. Intell. 15, 1233-1240 (1993).
[CrossRef]

Kim, S.-S.

Kishk, S.

Lee, B.

Lee, J. K.

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, "Domain configuration and crystal structure of Pb(Zn1/3Nb2/3)O3-5%PbTiO3 crystals as a function of the electric-field direction," J. Appl. Phys. 91, 4474-4478 (2002).
[CrossRef]

Lehureau, J.-C.

P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, "Image reconstruction using electro-optic holography," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003 (IEEE, 2003), Vol. 1, pp. 172-173.

Lippmann, G.

G. Lippmann, "La photographic intergrale," C. R. Acad. Sci. 146, 446-451 (1908).

Mahalanobis, A.

A. Mahalanobis, "Processing of multi-sensor data using correlation filters," in Algorithms, Devices, and Systems for Optical Information Processing II, B.Javidi and D.Psaltis, eds. Proc. SPIE 3466,56-64 (1998).

Mallat, S. G.

S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Trans. Pattern Anal. Mach. Intell. 11, 674-693 (1989).

Martínez-Corral, M.

Martínez-Cuenca, R.

Matoba, O.

McCormick, M.

McNamara, D.

Millan, J.

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, "Domain configuration and crystal structure of Pb(Zn1/3Nb2/3)O3-5%PbTiO3 crystals as a function of the electric-field direction," J. Appl. Phys. 91, 4474-4478 (2002).
[CrossRef]

Min, S.-W.

Okano, F.

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, "Analysis of resolution limitation of integral photography," J. Opt. Soc. Am. A 15, 2059-2065 (1998).
[CrossRef]

B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).

Okoshi, T.

Park, S. E.

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, "Domain configuration and crystal structure of Pb(Zn1/3Nb2/3)O3-5%PbTiO3 crystals as a function of the electric-field direction," J. Appl. Phys. 91, 4474-4478 (2002).
[CrossRef]

Réfrégier, Ph.

F. Goudail, F. Galland, and Ph. Réfrégier, "A general framework for designing image processing algorithms for coherent polarimetric images," in Proceedings of IEEE International Conference on Image Processing (IEEE, 2003), pp. 153-156.

Saavedra, G.

Sadjadi, F.

F. Sadjadi and C. S. L. Chun, "Automatic detection of small objects from their infrared state-of-polarization vectors," Opt. Lett. 28, 531-533 (2003).
[CrossRef] [PubMed]

F. Sadjadi, "Invariant algebra and the fusion of multi-spectral information," Inf. Fusion 3, 39-50 (2002).
[CrossRef]

F. Sadjadi, Selected Papers on Sensor and Data Fusion (SPIE, 1996).

Saveljev, V. V.

Setälä, T.

T. Setälä, M. Kaivola, and A. T. Friberg, "Degree of polarization in near fields of thermal sources: effects of surface waves," Phys. Rev. Lett. 88, 123902 (2002).

Shaw, L.

M. Kim, I. Dinstein, and L. Shaw, "A protopype filter design approach to pyramid generation," IEEE Trans. Pattern Anal. Mach. Intell. 15, 1233-1240 (1993).
[CrossRef]

Sides, S.

P. Chavez, S. Sides, and J. Anderson, "Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic," Photogramm. Eng. Remote Sens. 57, 295-303 (1991).

Solomon, J. E.

Son, J.-Y.

Sonhara, T.

Stelzer, E. H. K.

Stern, A.

Swoger, J.

Walker, J. S.

J. S. Walker, A Primer on Wavelets and Their Scientific Applications (Chapman & Hall/CRC, 1999).
[CrossRef]

Wolff, L. B.

Yang, L.

Ye, Z. G.

Z. G. Ye and M. Dong, "Morphotropic domain structures and phase transitions in relaxor-based piezo-ferroelectric (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystal," J. Appl. Phys. 87, 2312-2319 (2000).
[CrossRef]

Yun, J.

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, "Domain configuration and crystal structure of Pb(Zn1/3Nb2/3)O3-5%PbTiO3 crystals as a function of the electric-field direction," J. Appl. Phys. 91, 4474-4478 (2002).
[CrossRef]

Yuyama, I.

Appl. Opt. (9)

N. Davis, M. McCormick, and L. Yang, "Three-dimensional imaging systems: a new development," Appl. Opt. 27, 4520-4528 (1988).
[CrossRef]

B. Lee, S.-W. Min, and B. Javidi, "Theoretical analysis for three-dimensional integral imaging systems with double devices," Appl. Opt. 41, 4856-4865 (2002).
[CrossRef] [PubMed]

Y. Frauel and B. Javidi, "Digital three-dimensional image correlation by use of computer-reconstructed integral imaging," Appl. Opt. 41, 5488-5496 (2002).
[CrossRef] [PubMed]

A. Stern and B. Javidi, "Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging," Appl. Opt. 42, 7036-7042 (2003).
[CrossRef] [PubMed]

T. Okoshi, "Optimum design and depth resolution of lens sheet and projection type three dimensional displays," Appl. Opt. 10, 2284-2291 (1971).
[CrossRef] [PubMed]

J.-Y. Son, V. V. Saveljev, J.-S. Kim, S.-S. Kim, and B. Javidi, "Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates," Appl. Opt. 43, 4985-4992 (2004).
[CrossRef] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, "Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays," Appl. Opt. 43, 5806-5813 (2004).
[CrossRef] [PubMed]

J. Davise, D. McNamara, D. M. Cottrell, and T. Sonhara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Opt. 39, 1549-1554 (2000).
[CrossRef]

J. E. Solomon, "Polarization imaging," Appl. Opt. 20, 1537-1544 (1981).
[CrossRef] [PubMed]

C. R. Acad. Sci. (1)

G. Lippmann, "La photographic intergrale," C. R. Acad. Sci. 146, 446-451 (1908).

IEEE Trans. Commun. (1)

P. J. Burt and E. H. Adelson, "The Laplacian pyramid as a compact image code," IEEE Trans. Commun. 31, 532-540 (1983).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

M. Kim, I. Dinstein, and L. Shaw, "A protopype filter design approach to pyramid generation," IEEE Trans. Pattern Anal. Mach. Intell. 15, 1233-1240 (1993).
[CrossRef]

Inf. Fusion (1)

F. Sadjadi, "Invariant algebra and the fusion of multi-spectral information," Inf. Fusion 3, 39-50 (2002).
[CrossRef]

J. Appl. Phys. (2)

Z. G. Ye and M. Dong, "Morphotropic domain structures and phase transitions in relaxor-based piezo-ferroelectric (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystal," J. Appl. Phys. 87, 2312-2319 (2000).
[CrossRef]

J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, "Domain configuration and crystal structure of Pb(Zn1/3Nb2/3)O3-5%PbTiO3 crystals as a function of the electric-field direction," J. Appl. Phys. 91, 4474-4478 (2002).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Opt. Eng. (1)

J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Photogramm. Eng. Remote Sens. (1)

P. Chavez, S. Sides, and J. Anderson, "Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic," Photogramm. Eng. Remote Sens. 57, 295-303 (1991).

Other (13)

B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).

S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE, 2001).

T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

A. Mahalanobis, "Processing of multi-sensor data using correlation filters," in Algorithms, Devices, and Systems for Optical Information Processing II, B.Javidi and D.Psaltis, eds. Proc. SPIE 3466,56-64 (1998).

F. Sadjadi, Selected Papers on Sensor and Data Fusion (SPIE, 1996).

I. Daubechies, "Orthonormal bases of compactly supported wavelets," Commun. Pure Appl. Math. 41,906-996 (1988).

S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Trans. Pattern Anal. Mach. Intell. 11, 674-693 (1989).

J. S. Walker, A Primer on Wavelets and Their Scientific Applications (Chapman & Hall/CRC, 1999).
[CrossRef]

R. Hayden, G. Dalke, J. Henkel, and J. Bare, "Application of the IHS color transform to the processing of multi-sensor data and image enhancement," presented at the International Symposium on Remote Sensing of Arid and Semi-Arid Lands, (Environmental Research Institute of Michigan, 1982), pp. 599-616.

P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, "Image reconstruction using electro-optic holography," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003 (IEEE, 2003), Vol. 1, pp. 172-173.

T. Setälä, M. Kaivola, and A. T. Friberg, "Degree of polarization in near fields of thermal sources: effects of surface waves," Phys. Rev. Lett. 88, 123902 (2002).

F. Goudail, F. Galland, and Ph. Réfrégier, "A general framework for designing image processing algorithms for coherent polarimetric images," in Proceedings of IEEE International Conference on Image Processing (IEEE, 2003), pp. 153-156.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the proposed MOSIS. Fused multispectral and polarimetric 3D sensing and visualization that are based on integral imaging by using MALT is shown.

Fig. 2
Fig. 2

Illustration of MWD.

Fig. 3
Fig. 3

Image fusion with MWD.

Fig. 4
Fig. 4

Three-dimensional object with orthogonally polarized sheets on each side. The images are obtained by changing the polarization direction of the linear analyzer–polarizer (a) vertically, (b) horizontally, (c) diagonally. The optically visualized 3D object when the polarization direction of the linear analyzer–polarizer is (d) vertical and viewed from left, (e) horizontal and viewed from the right, (f) diagonal and viewed from the center.

Fig. 5
Fig. 5

(a) Spectrum of filters used to acquire the elemental images. A Hoya R-72 is used as an NIR filter, and a UV–IR cut filter is used as a visual band filter. (b) Spectrum of the CCD camera used to acquire the elemental images. The CCD camera is a Kodak ES 4.2i∕10, which provides 4 megapixels in 10-bit format and can detect wavelengths up to 1100 nm.

Fig. 6
Fig. 6

Elemental images of (a) a dice illuminated by NIR light and captured by a CCD camera with an NIR filter, (b) a heart-shaped object illuminated by visual light and captured by a CCD camera with a visual band filter, (c) the left face of a dice with 0° polarization and captured by a CCD camera with a 0° polarizer, (d) the right face of a dice with 90° polarization and captured by a CCD camera with a 90° polarizer.

Fig. 7
Fig. 7

Reconstructed dice image from the elemental images in Fig. 6(a) at a distance of (a) 19 mm and (b) 31 mm.

Fig. 8
Fig. 8

Reconstructed heart-shaped object image from the elemental images in Fig. 6(b) at a distance of (a) 19 mm and (b) 31 mm.

Fig. 9
Fig. 9

Reconstructed left face of a dice from the elemental images in Fig. 6(c) at a distance of (a) 19 mm and (b) 31 mm.

Fig. 10
Fig. 10

Reconstructed right face of a dice from the elemental images in Fig. 6(d) at distance of (a) 19 mm and (b) 31 mm.

Fig. 11
Fig. 11

Fused elemental images of two die and a heart-shaped object to reconstruct a fused multidimensional scene.

Fig. 12
Fig. 12

Reconstructed image from the fused elemental images in Fig. 11 at a distance of (a) 19 mm and (b) 31 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P 0 P a 1 , P v 1 , P h 1 , P d 1 .
P a ( n 1 ) P a n , P v n , P h n , P d n for   n = 1 , 2 , , N .
Ψ ( x ) = { 1 0 x < 1 / 2 1 1 / 2 x < 1 0 otherwise .

Metrics