Abstract

A thin, agile multiresolution, computational imaging sensor architecture, termed PANOPTES (processing arrays of Nyguist-limited observations to produce a thin electro-optic sensor), which utilizes arrays of microelectromechanical mirrors to adaptively redirect the fields of view of multiple low-resolution subimagers, is described. An information theory-based algorithm adapts the system and restores the image. The modulation transfer function (MTF) effects of utilizing micromirror arrays to steering imaging systems are analyzed, and computational methods for combining data collected from systems with differing MTFs are presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Mait, R. Athale, and J. van der Gracht, "Evolutionary paths in imaging and recent trends," Opt. Express 11, 2093-2101 (2003).
    [CrossRef] [PubMed]
  2. J. Mait, M. W. Haney, Keith Goossen, and M. P. Christensen, "Shedding light on the battlefield: tactical applications of photonic technology," Ref. A370034 (National Defense University Center for Technology and National Security Policy, 2004).
  3. J. Tanida, T. Kumagai, K. Yamada, and S. Miyatake, "Thin observation module by bound optics (TOMBO): concept and experimental verification," Appl. Opt. 40, 1806-1813 (2001).
    [CrossRef]
  4. M. P. Christensen, G. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gratch, and R. Athale, "ACTIVE-EYES: an adaptive pixel-by-pixel image segmentation sensor architecture for high dynamic range hyperspectral imaging," in Appl. Opt. 41,6093-6103 (2002).
  5. X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
    [CrossRef]
  6. S. Baker and T. Kanade, "Limits on super-resolution and how to break them," IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167-1183 (2002).
    [CrossRef]
  7. M. P. Christensen, M. W. Haney, D. Rajan, S. Wood, and S. Douglas, "PANOPTES: a thin agile multi-resolutions imaging sensor," paper presented at the Government Microcircuit Applications and Critical Technology Conference (GOMACTech-05), Las Vegas, Nev., 4-7 April 2005, paper 21.5.
  8. M. W. Haney, M. P. Christensen, D. Rajan, S. C. Douglas, and S. L. Wood, "Adaptive flat micro-mirror-based computational imaging architecture," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.
  9. P. B. Fellgett and E. H. Linfoot, "On the assessment of optical images," Philos. Trans. R. Soc. London 247, 269-407 (1955).
    [CrossRef]
  10. F. O. Huck, C. L. Fales, and Z. Rahman, "An information theory of visual communication," Philos. Trans. R. Soc. London 354, 2193-2247 (1996).
    [CrossRef]
  11. S. K. Nayar and V. Branzoi, "Programmable imaging using a digital micromirror array," in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04) (IEEE, 2004), Vol. 1, pp. 436-443.
  12. R. C. Gonzalez and R. E. Woods, Digital Image Processing. (Prentice-Hall, 2002).
  13. V. R. Bhakta and M. P. Christensen, "Performance metrics for multi-aperture computational imaging sensors," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.
  14. S. Wood, M Christensen, and D. Rajan, "Reconstruction algorithms for compound eye images using lens diversity," paper presented at the Defense Applications of Signal Processing 2004 Workshop, Midway Utah, 27 March-1 April 2005.
  15. S. L. Wood, B. J. Smithson, D. Rajan, and M. P. Christensen, "Performance of a MVE algorithm for compound eye image reconstruction using lens diversity," in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005 (ICASSP'05) (IEEE, 2005), pp. 593-596.
    [CrossRef] [PubMed]
  16. S. L. Wood, D. Rajan, M. P. Christensen, S. C. Douglas, and B. J. Smithson, "Resolution improvement for compound eye images through lens diversity," in Digital Signal Processing Workshop 2004 and the Third IEEE Signal Processing Education Workshop (IEEE, 2004), pp. 151-155, doi: .
    [CrossRef]
  17. H. -B. Lan, S. L. Wood, M. P. Christensen, and D. Rajan, "Benefits of optical system diversity for multiplexed image reconstruction," Appl. Opt. 45, 2859-2870 (2006).
    [CrossRef] [PubMed]
  18. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 6, pp. 146-151.
  19. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, 1968).
  20. A. W. Lohmann and W. T. Rhodes, "Two-pupil synthesis of optical transfer functions," Appl. Opt. 17, 1141-1151 (1978).
    [CrossRef] [PubMed]
  21. J. N. Mait and W. T. Rhodes, "Two-pupil synthesis of optical transfer functions. 2: Pupil function relationships," Appl. Opt. 25, 2003-2007 (1986).
    [CrossRef] [PubMed]
  22. A. Macovski, Medical Imaging Systems (Prentice-Hall, 1983).

2006 (1)

2005 (1)

M. W. Haney, M. P. Christensen, D. Rajan, S. C. Douglas, and S. L. Wood, "Adaptive flat micro-mirror-based computational imaging architecture," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.

2003 (2)

J. N. Mait, R. Athale, and J. van der Gracht, "Evolutionary paths in imaging and recent trends," Opt. Express 11, 2093-2101 (2003).
[CrossRef] [PubMed]

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

2002 (1)

S. Baker and T. Kanade, "Limits on super-resolution and how to break them," IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167-1183 (2002).
[CrossRef]

2001 (1)

1996 (1)

F. O. Huck, C. L. Fales, and Z. Rahman, "An information theory of visual communication," Philos. Trans. R. Soc. London 354, 2193-2247 (1996).
[CrossRef]

1986 (1)

1978 (1)

1955 (1)

P. B. Fellgett and E. H. Linfoot, "On the assessment of optical images," Philos. Trans. R. Soc. London 247, 269-407 (1955).
[CrossRef]

Anderson, R. C.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Athale, R.

J. N. Mait, R. Athale, and J. van der Gracht, "Evolutionary paths in imaging and recent trends," Opt. Express 11, 2093-2101 (2003).
[CrossRef] [PubMed]

M. P. Christensen, G. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gratch, and R. Athale, "ACTIVE-EYES: an adaptive pixel-by-pixel image segmentation sensor architecture for high dynamic range hyperspectral imaging," in Appl. Opt. 41,6093-6103 (2002).

Baker, S.

S. Baker and T. Kanade, "Limits on super-resolution and how to break them," IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167-1183 (2002).
[CrossRef]

Bhakta, V. R.

V. R. Bhakta and M. P. Christensen, "Performance metrics for multi-aperture computational imaging sensors," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.

Blumenthal, D. J.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Bowers, J. E.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Branzoi, V.

S. K. Nayar and V. Branzoi, "Programmable imaging using a digital micromirror array," in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04) (IEEE, 2004), Vol. 1, pp. 436-443.

Christensen, M

S. Wood, M Christensen, and D. Rajan, "Reconstruction algorithms for compound eye images using lens diversity," paper presented at the Defense Applications of Signal Processing 2004 Workshop, Midway Utah, 27 March-1 April 2005.

Christensen, M. P.

H. -B. Lan, S. L. Wood, M. P. Christensen, and D. Rajan, "Benefits of optical system diversity for multiplexed image reconstruction," Appl. Opt. 45, 2859-2870 (2006).
[CrossRef] [PubMed]

M. W. Haney, M. P. Christensen, D. Rajan, S. C. Douglas, and S. L. Wood, "Adaptive flat micro-mirror-based computational imaging architecture," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.

M. P. Christensen, M. W. Haney, D. Rajan, S. Wood, and S. Douglas, "PANOPTES: a thin agile multi-resolutions imaging sensor," paper presented at the Government Microcircuit Applications and Critical Technology Conference (GOMACTech-05), Las Vegas, Nev., 4-7 April 2005, paper 21.5.

V. R. Bhakta and M. P. Christensen, "Performance metrics for multi-aperture computational imaging sensors," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.

S. L. Wood, B. J. Smithson, D. Rajan, and M. P. Christensen, "Performance of a MVE algorithm for compound eye image reconstruction using lens diversity," in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005 (ICASSP'05) (IEEE, 2005), pp. 593-596.
[CrossRef] [PubMed]

S. L. Wood, D. Rajan, M. P. Christensen, S. C. Douglas, and B. J. Smithson, "Resolution improvement for compound eye images through lens diversity," in Digital Signal Processing Workshop 2004 and the Third IEEE Signal Processing Education Workshop (IEEE, 2004), pp. 151-155, doi: .
[CrossRef]

J. Mait, M. W. Haney, Keith Goossen, and M. P. Christensen, "Shedding light on the battlefield: tactical applications of photonic technology," Ref. A370034 (National Defense University Center for Technology and National Security Policy, 2004).

M. P. Christensen, G. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gratch, and R. Athale, "ACTIVE-EYES: an adaptive pixel-by-pixel image segmentation sensor architecture for high dynamic range hyperspectral imaging," in Appl. Opt. 41,6093-6103 (2002).

Coyle, K. M.

M. P. Christensen, G. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gratch, and R. Athale, "ACTIVE-EYES: an adaptive pixel-by-pixel image segmentation sensor architecture for high dynamic range hyperspectral imaging," in Appl. Opt. 41,6093-6103 (2002).

Douglas, S.

M. P. Christensen, M. W. Haney, D. Rajan, S. Wood, and S. Douglas, "PANOPTES: a thin agile multi-resolutions imaging sensor," paper presented at the Government Microcircuit Applications and Critical Technology Conference (GOMACTech-05), Las Vegas, Nev., 4-7 April 2005, paper 21.5.

Douglas, S. C.

M. W. Haney, M. P. Christensen, D. Rajan, S. C. Douglas, and S. L. Wood, "Adaptive flat micro-mirror-based computational imaging architecture," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.

S. L. Wood, D. Rajan, M. P. Christensen, S. C. Douglas, and B. J. Smithson, "Resolution improvement for compound eye images through lens diversity," in Digital Signal Processing Workshop 2004 and the Third IEEE Signal Processing Education Workshop (IEEE, 2004), pp. 151-155, doi: .
[CrossRef]

Euliss, G.

M. P. Christensen, G. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gratch, and R. Athale, "ACTIVE-EYES: an adaptive pixel-by-pixel image segmentation sensor architecture for high dynamic range hyperspectral imaging," in Appl. Opt. 41,6093-6103 (2002).

Fales, C. L.

F. O. Huck, C. L. Fales, and Z. Rahman, "An information theory of visual communication," Philos. Trans. R. Soc. London 354, 2193-2247 (1996).
[CrossRef]

Fellgett, P. B.

P. B. Fellgett and E. H. Linfoot, "On the assessment of optical images," Philos. Trans. R. Soc. London 247, 269-407 (1955).
[CrossRef]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing. (Prentice-Hall, 2002).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 6, pp. 146-151.

Goossen, Keith

J. Mait, M. W. Haney, Keith Goossen, and M. P. Christensen, "Shedding light on the battlefield: tactical applications of photonic technology," Ref. A370034 (National Defense University Center for Technology and National Security Policy, 2004).

Haney, M. W.

M. W. Haney, M. P. Christensen, D. Rajan, S. C. Douglas, and S. L. Wood, "Adaptive flat micro-mirror-based computational imaging architecture," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.

M. P. Christensen, M. W. Haney, D. Rajan, S. Wood, and S. Douglas, "PANOPTES: a thin agile multi-resolutions imaging sensor," paper presented at the Government Microcircuit Applications and Critical Technology Conference (GOMACTech-05), Las Vegas, Nev., 4-7 April 2005, paper 21.5.

J. Mait, M. W. Haney, Keith Goossen, and M. P. Christensen, "Shedding light on the battlefield: tactical applications of photonic technology," Ref. A370034 (National Defense University Center for Technology and National Security Policy, 2004).

M. P. Christensen, G. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gratch, and R. Athale, "ACTIVE-EYES: an adaptive pixel-by-pixel image segmentation sensor architecture for high dynamic range hyperspectral imaging," in Appl. Opt. 41,6093-6103 (2002).

Helkey, R.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Huck, F. O.

F. O. Huck, C. L. Fales, and Z. Rahman, "An information theory of visual communication," Philos. Trans. R. Soc. London 354, 2193-2247 (1996).
[CrossRef]

Jerphagnon, O.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Kaman, V.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Kanade, T.

S. Baker and T. Kanade, "Limits on super-resolution and how to break them," IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167-1183 (2002).
[CrossRef]

Keating, A.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Kumagai, T.

Lan, H. -B.

Linfoot, E. H.

P. B. Fellgett and E. H. Linfoot, "On the assessment of optical images," Philos. Trans. R. Soc. London 247, 269-407 (1955).
[CrossRef]

Liu, B.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Lohmann, A. W.

Macovski, A.

A. Macovski, Medical Imaging Systems (Prentice-Hall, 1983).

Mait, J.

J. Mait, M. W. Haney, Keith Goossen, and M. P. Christensen, "Shedding light on the battlefield: tactical applications of photonic technology," Ref. A370034 (National Defense University Center for Technology and National Security Policy, 2004).

Mait, J. N.

McFadden, M. J.

M. P. Christensen, G. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gratch, and R. Athale, "ACTIVE-EYES: an adaptive pixel-by-pixel image segmentation sensor architecture for high dynamic range hyperspectral imaging," in Appl. Opt. 41,6093-6103 (2002).

Milojkovic, P.

M. P. Christensen, G. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gratch, and R. Athale, "ACTIVE-EYES: an adaptive pixel-by-pixel image segmentation sensor architecture for high dynamic range hyperspectral imaging," in Appl. Opt. 41,6093-6103 (2002).

Miyatake, S.

Nayar, S. K.

S. K. Nayar and V. Branzoi, "Programmable imaging using a digital micromirror array," in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04) (IEEE, 2004), Vol. 1, pp. 436-443.

Poulsen, H. N.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Pusarla, C.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Rahman, Z.

F. O. Huck, C. L. Fales, and Z. Rahman, "An information theory of visual communication," Philos. Trans. R. Soc. London 354, 2193-2247 (1996).
[CrossRef]

Rajan, D.

H. -B. Lan, S. L. Wood, M. P. Christensen, and D. Rajan, "Benefits of optical system diversity for multiplexed image reconstruction," Appl. Opt. 45, 2859-2870 (2006).
[CrossRef] [PubMed]

M. W. Haney, M. P. Christensen, D. Rajan, S. C. Douglas, and S. L. Wood, "Adaptive flat micro-mirror-based computational imaging architecture," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.

M. P. Christensen, M. W. Haney, D. Rajan, S. Wood, and S. Douglas, "PANOPTES: a thin agile multi-resolutions imaging sensor," paper presented at the Government Microcircuit Applications and Critical Technology Conference (GOMACTech-05), Las Vegas, Nev., 4-7 April 2005, paper 21.5.

S. Wood, M Christensen, and D. Rajan, "Reconstruction algorithms for compound eye images using lens diversity," paper presented at the Defense Applications of Signal Processing 2004 Workshop, Midway Utah, 27 March-1 April 2005.

S. L. Wood, B. J. Smithson, D. Rajan, and M. P. Christensen, "Performance of a MVE algorithm for compound eye image reconstruction using lens diversity," in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005 (ICASSP'05) (IEEE, 2005), pp. 593-596.
[CrossRef] [PubMed]

S. L. Wood, D. Rajan, M. P. Christensen, S. C. Douglas, and B. J. Smithson, "Resolution improvement for compound eye images through lens diversity," in Digital Signal Processing Workshop 2004 and the Third IEEE Signal Processing Education Workshop (IEEE, 2004), pp. 151-155, doi: .
[CrossRef]

Rhodes, W. T.

Sechrist, J. R.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Smithson, B. J.

S. L. Wood, B. J. Smithson, D. Rajan, and M. P. Christensen, "Performance of a MVE algorithm for compound eye image reconstruction using lens diversity," in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005 (ICASSP'05) (IEEE, 2005), pp. 593-596.
[CrossRef] [PubMed]

S. L. Wood, D. Rajan, M. P. Christensen, S. C. Douglas, and B. J. Smithson, "Resolution improvement for compound eye images through lens diversity," in Digital Signal Processing Workshop 2004 and the Third IEEE Signal Processing Education Workshop (IEEE, 2004), pp. 151-155, doi: .
[CrossRef]

Tanida, J.

van der Gracht, J.

van der Gratch, J.

M. P. Christensen, G. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gratch, and R. Athale, "ACTIVE-EYES: an adaptive pixel-by-pixel image segmentation sensor architecture for high dynamic range hyperspectral imaging," in Appl. Opt. 41,6093-6103 (2002).

Van Trees, H. L.

H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, 1968).

Wood, S.

S. Wood, M Christensen, and D. Rajan, "Reconstruction algorithms for compound eye images using lens diversity," paper presented at the Defense Applications of Signal Processing 2004 Workshop, Midway Utah, 27 March-1 April 2005.

M. P. Christensen, M. W. Haney, D. Rajan, S. Wood, and S. Douglas, "PANOPTES: a thin agile multi-resolutions imaging sensor," paper presented at the Government Microcircuit Applications and Critical Technology Conference (GOMACTech-05), Las Vegas, Nev., 4-7 April 2005, paper 21.5.

Wood, S. L.

H. -B. Lan, S. L. Wood, M. P. Christensen, and D. Rajan, "Benefits of optical system diversity for multiplexed image reconstruction," Appl. Opt. 45, 2859-2870 (2006).
[CrossRef] [PubMed]

M. W. Haney, M. P. Christensen, D. Rajan, S. C. Douglas, and S. L. Wood, "Adaptive flat micro-mirror-based computational imaging architecture," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.

S. L. Wood, D. Rajan, M. P. Christensen, S. C. Douglas, and B. J. Smithson, "Resolution improvement for compound eye images through lens diversity," in Digital Signal Processing Workshop 2004 and the Third IEEE Signal Processing Education Workshop (IEEE, 2004), pp. 151-155, doi: .
[CrossRef]

S. L. Wood, B. J. Smithson, D. Rajan, and M. P. Christensen, "Performance of a MVE algorithm for compound eye image reconstruction using lens diversity," in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005 (ICASSP'05) (IEEE, 2005), pp. 593-596.
[CrossRef] [PubMed]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing. (Prentice-Hall, 2002).

Xu, Y.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Yamada, K.

Yuan, S.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Zheng, X.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

Appl. Opt. (4)

IEEE J. Sel. Top. Quantum Electron. (1)

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, "Three-dimensional MEMS photonic cross-connect switch design and performance," IEEE J. Sel. Top. Quantum Electron. 9, 571-578 (2003).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. Baker and T. Kanade, "Limits on super-resolution and how to break them," IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167-1183 (2002).
[CrossRef]

Opt. Express (1)

Philos. Trans. R. Soc. London (2)

P. B. Fellgett and E. H. Linfoot, "On the assessment of optical images," Philos. Trans. R. Soc. London 247, 269-407 (1955).
[CrossRef]

F. O. Huck, C. L. Fales, and Z. Rahman, "An information theory of visual communication," Philos. Trans. R. Soc. London 354, 2193-2247 (1996).
[CrossRef]

Other (13)

S. K. Nayar and V. Branzoi, "Programmable imaging using a digital micromirror array," in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04) (IEEE, 2004), Vol. 1, pp. 436-443.

R. C. Gonzalez and R. E. Woods, Digital Image Processing. (Prentice-Hall, 2002).

V. R. Bhakta and M. P. Christensen, "Performance metrics for multi-aperture computational imaging sensors," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.

S. Wood, M Christensen, and D. Rajan, "Reconstruction algorithms for compound eye images using lens diversity," paper presented at the Defense Applications of Signal Processing 2004 Workshop, Midway Utah, 27 March-1 April 2005.

S. L. Wood, B. J. Smithson, D. Rajan, and M. P. Christensen, "Performance of a MVE algorithm for compound eye image reconstruction using lens diversity," in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005 (ICASSP'05) (IEEE, 2005), pp. 593-596.
[CrossRef] [PubMed]

S. L. Wood, D. Rajan, M. P. Christensen, S. C. Douglas, and B. J. Smithson, "Resolution improvement for compound eye images through lens diversity," in Digital Signal Processing Workshop 2004 and the Third IEEE Signal Processing Education Workshop (IEEE, 2004), pp. 151-155, doi: .
[CrossRef]

J. Mait, M. W. Haney, Keith Goossen, and M. P. Christensen, "Shedding light on the battlefield: tactical applications of photonic technology," Ref. A370034 (National Defense University Center for Technology and National Security Policy, 2004).

M. P. Christensen, G. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gratch, and R. Athale, "ACTIVE-EYES: an adaptive pixel-by-pixel image segmentation sensor architecture for high dynamic range hyperspectral imaging," in Appl. Opt. 41,6093-6103 (2002).

M. P. Christensen, M. W. Haney, D. Rajan, S. Wood, and S. Douglas, "PANOPTES: a thin agile multi-resolutions imaging sensor," paper presented at the Government Microcircuit Applications and Critical Technology Conference (GOMACTech-05), Las Vegas, Nev., 4-7 April 2005, paper 21.5.

M. W. Haney, M. P. Christensen, D. Rajan, S. C. Douglas, and S. L. Wood, "Adaptive flat micro-mirror-based computational imaging architecture," presented at OSA Topical Meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, N.C., 6-9 June 2005.

A. Macovski, Medical Imaging Systems (Prentice-Hall, 1983).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 6, pp. 146-151.

H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Aerial image (original scene) of an airport terminal (from University of Southern California Signal and Image Processing Institute image database). The square represents the FOV of a single SI.

Fig. 2
Fig. 2

Information content (entropy) map used to identify regions of interest for the sample airport image in Fig. 1.

Fig. 3
Fig. 3

PANOPTES tiled approach. Each SI consists of a micromirror array, a reflective optical system in a single superstrate, and a low-resolution detector array.

Fig. 4
Fig. 4

Output of a single SI. The FOV of this SI is the square shown in Fig. 1.

Fig. 5
Fig. 5

Reconstructed figure using data from multiple SIs that are adaptively assigned to the scene of interest.

Fig. 6
Fig. 6

Plot of PSNR improvement achieved by using adaptive SI allocation and equal SI allocation.

Fig. 7
Fig. 7

Sawtooth phase function at the pupil of a SI due to steering all micromirrors in an array to an identical angle, which in this case is along the x direction.

Fig. 8
Fig. 8

Family of curves representing slices through the resultant MTF of the pupil function depicted in Fig. 7. The curves correspond to the following steering angles of the micromirror array: (from top to bottom) 0.5, 1, 1.5, and 2 deg.

Fig. 9
Fig. 9

MTF of a vertical slit aperture. Horizontal spatial frequencies are truncated, whereas vertical frequencies are readily passed.

Fig. 10
Fig. 10

Image from Fig. 1 with the MTF of vertical slit aperture (Fig. 9) applied.

Fig. 11
Fig. 11

(a) Schematic representation of the SI array output model for LMMSE. (b) Schematic representation of the equivalent imager output model for LMMSE to determine the effective MTF.

Fig. 12
Fig. 12

Effective aperture of four differently steered SI arrays. The fact that the coherence length of the incident light is smaller than the OPD (i.e., case 2) makes each individually appear as a slit (white), while the gray slits add incoherently (in intensity) and therefore do not improve the resolution.

Fig. 13
Fig. 13

Resultant images from applying the MTFs for four different orientations of the slit aperture depicted in Fig. 12 to the image of Fig. 1.

Fig. 14
Fig. 14

Effective MTF from the combination of apertures depicted in Fig. 12.

Fig. 15
Fig. 15

Results of applying the MTF depicted in Fig. 14 to the image of Fig. 1.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N ( x , y ) = 1 + ( M 1 ) [ I ( x , y ) I min ] ( I max I min ) ,
Y i = X H i + Z i ,     i = 1 n ,
MSE = σ x     2 σ z     2 σ z     2 + σ x     2 H T H ,
Y = X H eff + Z eff .
MSE eff = σ x 2 σ Z eff 2 σ Z eff 2 + σ x 2 H eff T H eff .
H eff 2 = σ Z eff 2 σ Z     2 H T H .
σ Z eff 2 = σ Z 2 n ,
H eff = ( H 1     2 + H 2     2 + + H n     2 n ) 1 / 2 .

Metrics