Abstract

A method is presented that permits the determination of the cloud effective particle size from Raman- or Rayleigh-integration temperature measurements that exploits the dependence of the multiple-scattering contributions to the lidar signals from heights above the cloud on the particle size of the cloud. Independent temperature information is needed for the determination of size. By use of Raman-integration temperatures, the technique is applied to cirrus measurements. The magnitude of the multiple-scattering effect and the above-cloud lidar signal strength limit the method's range of applicability to cirrus optical depths from 0.1 to 0.5. Our work implies that records of stratosphere temperature obtained with lidar may be affected by multiple scattering in clouds up to heights of 30 km and beyond.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Stephens, S. -C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, " The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," J. Atmos. Sci. 47, 1742- 1753 ( 1990).
    [CrossRef]
  2. M. B. Baker, " Cloud microphysics and climate," Science 276, 1072- 1078 ( 1997).
    [CrossRef]
  3. S. A. Young, C. M. R. Platt, R. T. Austin, and G. R. Patterson, " Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS," J. Appl. Meteorol. 39, 135- 153 ( 2000).
    [CrossRef]
  4. J. M. Intrieri, G. L. Stephens, W. L. Eberhard, and T. Uttal, " A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique," J. Appl. Meteorol. 32, 1074- 1082 ( 1993).
    [CrossRef]
  5. D. P. Donovan and A. C. A. P. van Lammeren, " Cloud effective particle size and water content profile retrievals using combined lidar and radar observations. 1. Theory and examples," J. Geophys. Res. 108, 27,425- 27,448 ( 2001).
  6. E. W. Eloranta, " Practical model for the calculation of multiply scattered lidar returns," Appl. Opt. 37, 2464- 2472 ( 1998).
    [CrossRef]
  7. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, " Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt. 41, 6307- 6324 ( 2002).
    [CrossRef] [PubMed]
  8. U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, " Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar," Appl. Opt. 34, 8315- 8329 ( 1995).
    [CrossRef] [PubMed]
  9. J. Reichardt, A. Dörnbrack, S. Reichardt, P. Yang, and T. J. McGee, " Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling," Atmos. Chem. Phys. 4, 1149- 1165 ( 2004).
    [CrossRef]
  10. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, " Atmospheric temperature measurements made by rotational Raman scattering," Appl. Opt. 32, 2758- 2764 ( 1993).
    [CrossRef] [PubMed]
  11. A. Hauchecorne, M. L. Chanin, P. Keckhut, and D. Nedeljkovic, " Lidar monitoring of the temperature in the middle and lower atmosphere," Appl. Phys. B 55, 29- 34 ( 1992).
    [CrossRef]
  12. P. Keckhut, M. L. Chanin, and A. Hauchecorne, " Stratosphere temperature measurement using Raman lidar," Appl. Opt. 29, 5182- 5186 ( 1990).
    [CrossRef] [PubMed]
  13. J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, " Combined Raman lidar for aerosol, ozone, and moisture measurements," Opt. Eng. 35, 1457- 1465 ( 1996).
    [CrossRef]
  14. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, " Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113- 7131 ( 1992).
    [CrossRef] [PubMed]
  15. J. Reichardt, M. Hess, and A. Macke, " Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions," Appl. Opt. 39, 1895- 1910 ( 2000).
    [CrossRef]
  16. J. Reichardt, " Error analysis of Raman differential absorption lidar ozone measurements in ice clouds," Appl. Opt. 39, 6058- 6071 ( 2000).
    [CrossRef]
  17. J. Reichardt, S. Reichardt, M. Hess, and T. J. McGee, " Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation," J. Geophys. Res. 107(D21), 4562, doi: ( 2002).
    [CrossRef]
  18. A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, " Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4 °N," J. Atmos. Sci. 54, 2630- 2641 ( 1997).
    [CrossRef]
  19. L. R. Bissonnette and G. Roy, " Lidar multiple scattering retrieval: Monte Carlo validation, field tests, and a case study," in Review and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), ESA doc. SP-561 (European Space Agency, 2004), pp. 313- 316.
  20. B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
    [CrossRef]
  21. P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
    [CrossRef]
  22. J. Reichardt and S. Reichardt, " Multiple-scattering effect on integration-method temperature measurements: determination of cloud effective particle size," in Review and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), ESA doc. SP-561 (European Space Agency, 2004), pp. 403- 406.

2004 (1)

J. Reichardt, A. Dörnbrack, S. Reichardt, P. Yang, and T. J. McGee, " Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling," Atmos. Chem. Phys. 4, 1149- 1165 ( 2004).
[CrossRef]

2002 (2)

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, " Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt. 41, 6307- 6324 ( 2002).
[CrossRef] [PubMed]

J. Reichardt, S. Reichardt, M. Hess, and T. J. McGee, " Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation," J. Geophys. Res. 107(D21), 4562, doi: ( 2002).
[CrossRef]

2001 (2)

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

D. P. Donovan and A. C. A. P. van Lammeren, " Cloud effective particle size and water content profile retrievals using combined lidar and radar observations. 1. Theory and examples," J. Geophys. Res. 108, 27,425- 27,448 ( 2001).

2000 (3)

1998 (1)

1997 (2)

M. B. Baker, " Cloud microphysics and climate," Science 276, 1072- 1078 ( 1997).
[CrossRef]

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, " Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4 °N," J. Atmos. Sci. 54, 2630- 2641 ( 1997).
[CrossRef]

1996 (1)

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, " Combined Raman lidar for aerosol, ozone, and moisture measurements," Opt. Eng. 35, 1457- 1465 ( 1996).
[CrossRef]

1995 (1)

1993 (2)

J. M. Intrieri, G. L. Stephens, W. L. Eberhard, and T. Uttal, " A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique," J. Appl. Meteorol. 32, 1074- 1082 ( 1993).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, " Atmospheric temperature measurements made by rotational Raman scattering," Appl. Opt. 32, 2758- 2764 ( 1993).
[CrossRef] [PubMed]

1992 (2)

1990 (3)

P. Keckhut, M. L. Chanin, and A. Hauchecorne, " Stratosphere temperature measurement using Raman lidar," Appl. Opt. 29, 5182- 5186 ( 1990).
[CrossRef] [PubMed]

G. L. Stephens, S. -C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, " The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," J. Atmos. Sci. 47, 1742- 1753 ( 1990).
[CrossRef]

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Ansmann, A.

Arduini, R. F.

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Austin, R. T.

S. A. Young, C. M. R. Platt, R. T. Austin, and G. R. Patterson, " Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS," J. Appl. Meteorol. 39, 135- 153 ( 2000).
[CrossRef]

Baker, M. B.

M. B. Baker, " Cloud microphysics and climate," Science 276, 1072- 1078 ( 1997).
[CrossRef]

Baum, B. A.

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

Bissonnette, L. R.

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, " Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt. 41, 6307- 6324 ( 2002).
[CrossRef] [PubMed]

L. R. Bissonnette and G. Roy, " Lidar multiple scattering retrieval: Monte Carlo validation, field tests, and a case study," in Review and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), ESA doc. SP-561 (European Space Agency, 2004), pp. 313- 316.

Chanin, M. L.

A. Hauchecorne, M. L. Chanin, P. Keckhut, and D. Nedeljkovic, " Lidar monitoring of the temperature in the middle and lower atmosphere," Appl. Phys. B 55, 29- 34 ( 1992).
[CrossRef]

P. Keckhut, M. L. Chanin, and A. Hauchecorne, " Stratosphere temperature measurement using Raman lidar," Appl. Opt. 29, 5182- 5186 ( 1990).
[CrossRef] [PubMed]

Cober, S. G.

Deshler, T.

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, " Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4 °N," J. Atmos. Sci. 54, 2630- 2641 ( 1997).
[CrossRef]

U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, " Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar," Appl. Opt. 34, 8315- 8329 ( 1995).
[CrossRef] [PubMed]

Donovan, D. P.

D. P. Donovan and A. C. A. P. van Lammeren, " Cloud effective particle size and water content profile retrievals using combined lidar and radar observations. 1. Theory and examples," J. Geophys. Res. 108, 27,425- 27,448 ( 2001).

Dörnbrack, A.

J. Reichardt, A. Dörnbrack, S. Reichardt, P. Yang, and T. J. McGee, " Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling," Atmos. Chem. Phys. 4, 1149- 1165 ( 2004).
[CrossRef]

Eberhard, W. L.

J. M. Intrieri, G. L. Stephens, W. L. Eberhard, and T. Uttal, " A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique," J. Appl. Meteorol. 32, 1074- 1082 ( 1993).
[CrossRef]

Eloranta, E. W.

Flatau, P. J.

G. L. Stephens, S. -C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, " The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," J. Atmos. Sci. 47, 1742- 1753 ( 1990).
[CrossRef]

Gao, B. -C.

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

Hauchecorne, A.

A. Hauchecorne, M. L. Chanin, P. Keckhut, and D. Nedeljkovic, " Lidar monitoring of the temperature in the middle and lower atmosphere," Appl. Phys. B 55, 29- 34 ( 1992).
[CrossRef]

P. Keckhut, M. L. Chanin, and A. Hauchecorne, " Stratosphere temperature measurement using Raman lidar," Appl. Opt. 29, 5182- 5186 ( 1990).
[CrossRef] [PubMed]

Hess, M.

J. Reichardt, S. Reichardt, M. Hess, and T. J. McGee, " Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation," J. Geophys. Res. 107(D21), 4562, doi: ( 2002).
[CrossRef]

J. Reichardt, M. Hess, and A. Macke, " Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions," Appl. Opt. 39, 1895- 1910 ( 2000).
[CrossRef]

Heymsfield, A. J.

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Hu, Y. X.

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

Intrieri, J. M.

J. M. Intrieri, G. L. Stephens, W. L. Eberhard, and T. Uttal, " A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique," J. Appl. Meteorol. 32, 1074- 1082 ( 1993).
[CrossRef]

Isaac, G. A.

Keckhut, P.

A. Hauchecorne, M. L. Chanin, P. Keckhut, and D. Nedeljkovic, " Lidar monitoring of the temperature in the middle and lower atmosphere," Appl. Phys. B 55, 29- 34 ( 1992).
[CrossRef]

P. Keckhut, M. L. Chanin, and A. Hauchecorne, " Stratosphere temperature measurement using Raman lidar," Appl. Opt. 29, 5182- 5186 ( 1990).
[CrossRef] [PubMed]

Macke, A.

Mattis, I.

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, " Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4 °N," J. Atmos. Sci. 54, 2630- 2641 ( 1997).
[CrossRef]

McFarquhar, G. M.

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

McGee, T. J.

J. Reichardt, A. Dörnbrack, S. Reichardt, P. Yang, and T. J. McGee, " Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling," Atmos. Chem. Phys. 4, 1149- 1165 ( 2004).
[CrossRef]

J. Reichardt, S. Reichardt, M. Hess, and T. J. McGee, " Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation," J. Geophys. Res. 107(D21), 4562, doi: ( 2002).
[CrossRef]

Michaelis, W.

Miloshevich, L. M.

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

Mitev, V.

Nasiri, S. L.

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

Nedeljkovic, D.

A. Hauchecorne, M. L. Chanin, P. Keckhut, and D. Nedeljkovic, " Lidar monitoring of the temperature in the middle and lower atmosphere," Appl. Phys. B 55, 29- 34 ( 1992).
[CrossRef]

Parker, L.

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Patterson, G. R.

S. A. Young, C. M. R. Platt, R. T. Austin, and G. R. Patterson, " Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS," J. Appl. Meteorol. 39, 135- 153 ( 2000).
[CrossRef]

Pepler, S. J.

Platt, C. M. R.

S. A. Young, C. M. R. Platt, R. T. Austin, and G. R. Patterson, " Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS," J. Appl. Meteorol. 39, 135- 153 ( 2000).
[CrossRef]

Poutier, L.

Reichardt, J.

J. Reichardt, A. Dörnbrack, S. Reichardt, P. Yang, and T. J. McGee, " Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling," Atmos. Chem. Phys. 4, 1149- 1165 ( 2004).
[CrossRef]

J. Reichardt, S. Reichardt, M. Hess, and T. J. McGee, " Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation," J. Geophys. Res. 107(D21), 4562, doi: ( 2002).
[CrossRef]

J. Reichardt, " Error analysis of Raman differential absorption lidar ozone measurements in ice clouds," Appl. Opt. 39, 6058- 6071 ( 2000).
[CrossRef]

J. Reichardt, M. Hess, and A. Macke, " Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions," Appl. Opt. 39, 1895- 1910 ( 2000).
[CrossRef]

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, " Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4 °N," J. Atmos. Sci. 54, 2630- 2641 ( 1997).
[CrossRef]

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, " Combined Raman lidar for aerosol, ozone, and moisture measurements," Opt. Eng. 35, 1457- 1465 ( 1996).
[CrossRef]

U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, " Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar," Appl. Opt. 34, 8315- 8329 ( 1995).
[CrossRef] [PubMed]

J. Reichardt and S. Reichardt, " Multiple-scattering effect on integration-method temperature measurements: determination of cloud effective particle size," in Review and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), ESA doc. SP-561 (European Space Agency, 2004), pp. 403- 406.

Reichardt, S.

J. Reichardt, A. Dörnbrack, S. Reichardt, P. Yang, and T. J. McGee, " Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling," Atmos. Chem. Phys. 4, 1149- 1165 ( 2004).
[CrossRef]

J. Reichardt, S. Reichardt, M. Hess, and T. J. McGee, " Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation," J. Geophys. Res. 107(D21), 4562, doi: ( 2002).
[CrossRef]

J. Reichardt and S. Reichardt, " Multiple-scattering effect on integration-method temperature measurements: determination of cloud effective particle size," in Review and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), ESA doc. SP-561 (European Space Agency, 2004), pp. 403- 406.

Riebesell, M.

Roy, G.

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, " Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt. 41, 6307- 6324 ( 2002).
[CrossRef] [PubMed]

L. R. Bissonnette and G. Roy, " Lidar multiple scattering retrieval: Monte Carlo validation, field tests, and a case study," in Review and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), ESA doc. SP-561 (European Space Agency, 2004), pp. 313- 316.

Serwazi, M.

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, " Combined Raman lidar for aerosol, ozone, and moisture measurements," Opt. Eng. 35, 1457- 1465 ( 1996).
[CrossRef]

Soulen, P. F.

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

Spinhirne, J. D.

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Stackhouse, P. W.

G. L. Stephens, S. -C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, " The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," J. Atmos. Sci. 47, 1742- 1753 ( 1990).
[CrossRef]

Starr, D. O'C.

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Stephens, G. L.

J. M. Intrieri, G. L. Stephens, W. L. Eberhard, and T. Uttal, " A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique," J. Appl. Meteorol. 32, 1074- 1082 ( 1993).
[CrossRef]

G. L. Stephens, S. -C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, " The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," J. Atmos. Sci. 47, 1742- 1753 ( 1990).
[CrossRef]

Suttles, J. T.

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Thomas, L.

Tsay, S. -C.

G. L. Stephens, S. -C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, " The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," J. Atmos. Sci. 47, 1742- 1753 ( 1990).
[CrossRef]

Uttal, T.

J. M. Intrieri, G. L. Stephens, W. L. Eberhard, and T. Uttal, " A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique," J. Appl. Meteorol. 32, 1074- 1082 ( 1993).
[CrossRef]

van Lammeren, A. C. A. P.

D. P. Donovan and A. C. A. P. van Lammeren, " Cloud effective particle size and water content profile retrievals using combined lidar and radar observations. 1. Theory and examples," J. Geophys. Res. 108, 27,425- 27,448 ( 2001).

Vaughan, G.

Wagner, F.

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, " Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4 °N," J. Atmos. Sci. 54, 2630- 2641 ( 1997).
[CrossRef]

Wandinger, U.

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, " Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4 °N," J. Atmos. Sci. 54, 2630- 2641 ( 1997).
[CrossRef]

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, " Combined Raman lidar for aerosol, ozone, and moisture measurements," Opt. Eng. 35, 1457- 1465 ( 1996).
[CrossRef]

U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, " Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar," Appl. Opt. 34, 8315- 8329 ( 1995).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, " Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113- 7131 ( 1992).
[CrossRef] [PubMed]

Wareing, D. P.

Weitkamp, C.

Welch, R. M.

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Wielicki, B. A.

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Wiscombe, W. J.

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

Wu, M. -L. C.

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Yang, P.

J. Reichardt, A. Dörnbrack, S. Reichardt, P. Yang, and T. J. McGee, " Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling," Atmos. Chem. Phys. 4, 1149- 1165 ( 2004).
[CrossRef]

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

Young, S. A.

S. A. Young, C. M. R. Platt, R. T. Austin, and G. R. Patterson, " Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS," J. Appl. Meteorol. 39, 135- 153 ( 2000).
[CrossRef]

Appl. Opt. (8)

E. W. Eloranta, " Practical model for the calculation of multiply scattered lidar returns," Appl. Opt. 37, 2464- 2472 ( 1998).
[CrossRef]

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, " Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt. 41, 6307- 6324 ( 2002).
[CrossRef] [PubMed]

U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, " Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar," Appl. Opt. 34, 8315- 8329 ( 1995).
[CrossRef] [PubMed]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, " Atmospheric temperature measurements made by rotational Raman scattering," Appl. Opt. 32, 2758- 2764 ( 1993).
[CrossRef] [PubMed]

P. Keckhut, M. L. Chanin, and A. Hauchecorne, " Stratosphere temperature measurement using Raman lidar," Appl. Opt. 29, 5182- 5186 ( 1990).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, " Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113- 7131 ( 1992).
[CrossRef] [PubMed]

J. Reichardt, M. Hess, and A. Macke, " Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions," Appl. Opt. 39, 1895- 1910 ( 2000).
[CrossRef]

J. Reichardt, " Error analysis of Raman differential absorption lidar ozone measurements in ice clouds," Appl. Opt. 39, 6058- 6071 ( 2000).
[CrossRef]

Appl. Phys. B (1)

A. Hauchecorne, M. L. Chanin, P. Keckhut, and D. Nedeljkovic, " Lidar monitoring of the temperature in the middle and lower atmosphere," Appl. Phys. B 55, 29- 34 ( 1992).
[CrossRef]

Atmos. Chem. Phys. (1)

J. Reichardt, A. Dörnbrack, S. Reichardt, P. Yang, and T. J. McGee, " Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling," Atmos. Chem. Phys. 4, 1149- 1165 ( 2004).
[CrossRef]

J. Appl. Meteorol. (2)

S. A. Young, C. M. R. Platt, R. T. Austin, and G. R. Patterson, " Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS," J. Appl. Meteorol. 39, 135- 153 ( 2000).
[CrossRef]

J. M. Intrieri, G. L. Stephens, W. L. Eberhard, and T. Uttal, " A method for determining cirrus cloud particle sizes using lidar and radar backscatter technique," J. Appl. Meteorol. 32, 1074- 1082 ( 1993).
[CrossRef]

J. Atmos. Sci. (2)

G. L. Stephens, S. -C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, " The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," J. Atmos. Sci. 47, 1742- 1753 ( 1990).
[CrossRef]

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, " Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over central Europe at 53.4 °N," J. Atmos. Sci. 54, 2630- 2641 ( 1997).
[CrossRef]

J. Geophys. Res. (3)

P. Yang, B. -C. Gao, B. A. Baum, W. J. Wiscombe, Y. X. Hu, S. L. Nasiri, P. F. Soulen, A. J. Heymsfield, G. M. McFarquhar, and L. M. Miloshevich, " Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands," J. Geophys. Res. 106, 17,267- 17,291 ( 2001).
[CrossRef]

D. P. Donovan and A. C. A. P. van Lammeren, " Cloud effective particle size and water content profile retrievals using combined lidar and radar observations. 1. Theory and examples," J. Geophys. Res. 108, 27,425- 27,448 ( 2001).

J. Reichardt, S. Reichardt, M. Hess, and T. J. McGee, " Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation," J. Geophys. Res. 107(D21), 4562, doi: ( 2002).
[CrossRef]

Mon. Weather Rev. (1)

B. A. Wielicki, J. T. Suttles, A. J. Heymsfield, R. M. Welch, J. D. Spinhirne, M. -L. C. Wu, D. O'C. Starr, L. Parker, and R. F. Arduini, " The 27-28 October 1986 FIRE IFO cirrus case study: comparison of radiative transfer theory with observations by satellite and aircraft," Mon. Weather Rev. 118, 2356- 2376 ( 1990).
[CrossRef]

Opt. Eng. (1)

J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, " Combined Raman lidar for aerosol, ozone, and moisture measurements," Opt. Eng. 35, 1457- 1465 ( 1996).
[CrossRef]

Science (1)

M. B. Baker, " Cloud microphysics and climate," Science 276, 1072- 1078 ( 1997).
[CrossRef]

Other (2)

J. Reichardt and S. Reichardt, " Multiple-scattering effect on integration-method temperature measurements: determination of cloud effective particle size," in Review and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), ESA doc. SP-561 (European Space Agency, 2004), pp. 403- 406.

L. R. Bissonnette and G. Roy, " Lidar multiple scattering retrieval: Monte Carlo validation, field tests, and a case study," in Review and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), ESA doc. SP-561 (European Space Agency, 2004), pp. 313- 316.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Flow chart of procedure for determining particle size.

Fig. 2
Fig. 2

Assessment of computational requirements. Left, difference in temperature between successive third-order multiple-scattering runs (run numbers ρ are indicated; T 0 (3) are the RI temperature data without correction). Center, difference in temperature between fourth-order and third-order multiple-scattering runs (traces of runs 3 and 4 overlap almost completely). Right, measurement of cirrus extinction used for the computations (optical depth of 0.4). The effective diameter of ice cloud particles is assumed to be 250 μm; the FOV is 0.6 mrad.

Fig. 3
Fig. 3

Multiple-scattering-induced temperature errors ΔT above a homogeneous cirrus cloud as functions of particle effective diameters for several FOVs. Bottom right, temperature errors observed with a FOV of 2.0 mrad relative to those observed with a FOV of 0.4 mrad. The model cirrus base, vertical extent, and optical depth are 10 km, 2 km, and 0.1, respectively. The maximum scattering order is four.

Fig. 4
Fig. 4

Multiple-scattering-induced temperature errors above a bilayered cirrus cloud as functions of bottom-layer relative width for several FOVs. Effective particle diameter of the bottom layer (d 1) is 250 μm, and of the top layer (d 2) either 25 μm or 150 μm. Temperature errors obtained for homogeneous clouds consisting of 50 μm and 200 μm particles are shown for comparison (curves with symbols). The model cirrus base, vertical extent, and optical depth are 10 km, 2 km, and 0.1, respectively. The maximum scattering order is four.

Fig. 5
Fig. 5

RI temperature measurements in the presence of an optically thin cirrus cloud (top) and under cloud-free atmospheric conditions (bottom). Left, Raman-integration temperatures, and temperature profiles measured with radiosondes (local, dashed curves; near-by German Weather Service stations at Greifswald, Hannover, and Schleswig, thin solid curves) launched during the lidar observations. Right, particle backscatter coefficients and Rayleigh backscatter coefficients (thin solid curves). The measurements were taken at the GKSS Research Center in northern Germany on the evenings of 7 March 1995 and 23 October 1995; 186 and 228 min of lidar data, respectively, are integrated. Error bars indicate the standard deviation owing to signal noise.

Fig. 6
Fig. 6

Effect of cirrus cloud on RI temperature measurements. Left, Raman-integration temperature and temperature profiles measured with radiosondes (local, dashed curve; near-by German Weather Service stations, thin solid curves) launched during the lidar observation. Right, particle backscatter coefficient and Rayleigh backscatter coefficient (thin solid curve). The measurement was taken on the evening of 22 February 1995; 276 minutes of lidar data are integrated. Error bars indicate the standard deviation owing to signal noise.

Fig. 7
Fig. 7

RI temperature measurement of 22 February 1995 corrected for multiple scattering, assuming a homogeneous cirrus cloud with several effective particle diameters (curves with symbols). RI temperatures without correction, and the range of the radiosonde temperature profiles (shaded area) are also shown.

Fig. 8
Fig. 8

Residual temperature errors Δ T res = T cor T RS ¯ of the measurement on 22 February 1995, assuming a bilayered cirrus cloud. T cor is the temperature measurement corrected for multiple scattering, T RS ¯ is the mean radiosonde profile. Bottom-layer particle diameters, bottom-layer relative widths, and top-layer particle diameters, from left to right, are given for the curves. Best homogeneous-cloud results (d = 230 μm) are shown for comparison (curve with symbols, with error bars), as is the variability of the radiosonde measurements (shaded area). Five-point sliding averaging has been applied to smooth the profiles.

Fig. 9
Fig. 9

Same as Fig. 6 but for the cirrus measurement on 9 October 1995. A local radiosonde was not available. Note that backscatter coefficients are shown on a logarithmic scale; 120 min of lidar data are integrated.

Fig. 10
Fig. 10

Residual temperature errors of the measurement on 9 October 1995, assuming a homogeneous or a bilayered cirrus cloud.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T ( z ) = g M n ( z ) k z z 0 n ( ζ ) d ζ + n ( z 0 ) n ( z ) T ( z 0 ) ,
N ( λ , z ) = K z 2 [ 1 + N ( MS ) ( λ , z ) N ( 1 ) ( λ , z ) ] R ( z ) n ( z ) × exp { 0 z [ α ( λ , ζ ) + α ( λ , ζ ) ] d ζ } ,
α = α clo + α aer + C mol sca n .
n ( z ) = n ( z 0 ) z 2 z 0 2 R ( z ) 1 1 + N ( MS ) ( λ , z 0 ) / N ( 1 ) ( λ , z 0 ) 1 + N ( MS ) ( λ , z ) / N ( 1 ) ( λ , z ) N ( λ , z ) N ( λ , z 0 ) exp { z z 0 [ α ( λ , ζ ) + α ( λ , ζ ) ] d ζ } .
n mea ( z ) = n ( z 0 ) z 2 z 0 2 N ( λ , z ) N ( λ , z 0 ) exp { [ C mol   sca ( λ ) + C mol   sca ( λ ) ] z z 0 n mea ( ζ ) d ζ }
Δ T ( z ) = T mea ( z ) T ref ( z ) ,
Δ T ( z ) = [ 1 + N ( MS ) ( z 0 ) / N ( 1 ) ( z 0 ) 1 + N ( MS ) ( z ) / N ( 1 ) ( z ) F ( z ) 1 ] T ( z ) ,

Metrics