Abstract

We present a robust and computationally efficient method for retrieving aerosol optical depth (AOD) from top-of-atmosphere ATSR-2 (Along-Track Scanning Radiometer) and AATSR (Advanced ATSR) reflectance data that is formulated to allow retrieval of the AOD from the 11 year archive of (A)ATSR data on the global scale. The approach uses a physical model of light scattering that requires no a priori information on the land surface. Computational efficiency is achieved by using precalculated lookup tables (LUTs) for the numerical inversion of a radiative-transfer model of the atmosphere. Estimates of AOD retrieved by the LUT approach are tested on AATSR data for a range of global land surfaces and are shown to be highly correlated with sunphotometer measurements of the AOD at 550  nm. (Pearson's correlation coefficient r2 is 0.71.)

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription