Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser-mode selection by a combination of biprism-like reflectors with narrow amplitude masks

Not Accessible

Your library or personal account may give you access

Abstract

In recent work the laser mode selectivity induced separately by a biprism-like reflector and by an absorbing strip was investigated by numerical analysis. It was shown that each of these elements in an otherwise conventional resonator was suitable to cause the laser to oscillate preferentially on the first odd mode that contains a line singularity, which is a useful dark beam (i.e., a laser beam with a dark central region) for high-resolution metrological applications. We study the combined effect of these two mode-selecting elements and show that the unified analysis leads to much better performance than could be expected from a simple superposition of the performance with each element alone. The results indicate that the mode selectivity can be enhanced by at least a factor of 3 compared with that of laser resonators with biprism-like reflectors alone. Thus a laser equipped with such a combined element will oscillate on a pure first-order mode with high power efficiency. Moreover, calculations show that the resultant dark beam, focused for metrological applications, has a significantly improved shape compared with the dark beam obtained by external modulation of a fundamental Gaussian beam.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Two regions of mode selection in resonators with biprismlike elements

Yurij Parkhomenko, Boris Spektor, and Joseph Shamir
Appl. Opt. 44(13) 2546-2552 (2005)

Selection of dark modes in resonators with conical reflectors

Yurij N. Parkhomenko, Boris Spektor, and Joseph Shamir
Appl. Opt. 50(19) 3093-3100 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved