Abstract

A novel, chemical-etching technique produces very high throughput, polarization-maintaining probes for near-field, scanning, optical microscopy (NSOM). The process includes coating the tips with aluminum and forming the apertures with a focused ion beam (FIB). The elliptical core fibers used resulted in elliptical apertures for the probes. The throughput of the probes depends on the incident polarization. For polarization parallel to the minor axis, the tip presents an insertion loss of only 20  dB for aperture widths of 55  nm. Probes have a typical polarization extinction of 100 to 1 in the far field. These tips produced NSOM images of gold dots on a GaAs substrate in reflection mode.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, " Development of a 500-Å spatial-resolution light-microscope," Ultramicroscopy 13, 227- 231 ( 1984).
    [CrossRef]
  2. D. Pohl, W. Denk, and M. Lanz, " Optical stethoscopy: image recording with resolution," Appl. Phys. Lett. 44, 651- 653 ( 1984).
    [CrossRef]
  3. E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. L. Kostelak, " Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468- 1470 ( 1991).
    [CrossRef] [PubMed]
  4. G. A. Valaskovic, "Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes," Appl. Opt. 34, 1215-1228 (1995).
    [CrossRef] [PubMed]
  5. M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer-Verlag, 1998).
    [CrossRef]
  6. V. Deckert, D. Ziesel, R. Zenobi, and T. Vo-Dinh, " Near-field surface-enhanced Raman of dye-labeled DNA with 100-nm resolution," Anal. Chem. 70, 2646- 2650 ( 1998).
    [CrossRef] [PubMed]
  7. N. Hosaka and T. Saiki, " Near-field fluorescence imaging of single molecules with a resolution in the range of 10 nm," J. Microsc. 202, 362- 364 ( 2001).
    [CrossRef] [PubMed]
  8. E. B. McDaniel and J. W. P. Hsu, " Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals," J. Appl. Phys. 80, 1085- 1093 ( 1996).
    [CrossRef]
  9. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, " Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 31, 4563- 4568 ( 1992).
    [CrossRef] [PubMed]
  10. J. A. Cline and M. Isaacson, " Probe-sample interactions in reflection near-field scanning optical microscopy," Appl. Opt. 3, 4869- 4876 ( 1995).
    [CrossRef]
  11. T. Mitsui and T. Sekiguchi, " Observation of polarization property in near-field optical imaging by a polarization-maintaining fiber probe," J. Electron Microsc. 53(2), 209- 215 ( 2004).
    [CrossRef]
  12. T. Mitsui, " Development of a polarization-preserving optical-fiber probe for near-field scanning optical microscopy and the influences of bending and squeezing on the polarization properties," Rev. Sci. Instrum. 76, 043,703 ( 2005).
    [CrossRef]
  13. R. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).
  14. S. Monomode and M. Ohtsu, " Fabrication of pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231- 2235 ( 1996).
    [CrossRef]
  15. P. Hoffmann, B. Dutoit, and R. P. Salath, " Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165- 170 ( 1995).
    [CrossRef]
  16. S. Pilevar, K. Edinger, W. Atia, I. Smolyaninov, and C. Davis, " Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy," Appl. Phys. Lett. 72, 3133- 3135 ( 1998).
    [CrossRef]
  17. J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, " High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling," Appl. Phys. Lett. 72, 3115- 3117 ( 1998).
    [CrossRef]
  18. A. Zakharian, M. Mansuripur, and J. Moloney, " Transmission of light through small elliptical apertures," Opt. Express 12, 2631- 2648 ( 2004).
    [CrossRef] [PubMed]

2005 (1)

T. Mitsui, " Development of a polarization-preserving optical-fiber probe for near-field scanning optical microscopy and the influences of bending and squeezing on the polarization properties," Rev. Sci. Instrum. 76, 043,703 ( 2005).
[CrossRef]

2004 (2)

T. Mitsui and T. Sekiguchi, " Observation of polarization property in near-field optical imaging by a polarization-maintaining fiber probe," J. Electron Microsc. 53(2), 209- 215 ( 2004).
[CrossRef]

A. Zakharian, M. Mansuripur, and J. Moloney, " Transmission of light through small elliptical apertures," Opt. Express 12, 2631- 2648 ( 2004).
[CrossRef] [PubMed]

2001 (1)

N. Hosaka and T. Saiki, " Near-field fluorescence imaging of single molecules with a resolution in the range of 10 nm," J. Microsc. 202, 362- 364 ( 2001).
[CrossRef] [PubMed]

1998 (3)

V. Deckert, D. Ziesel, R. Zenobi, and T. Vo-Dinh, " Near-field surface-enhanced Raman of dye-labeled DNA with 100-nm resolution," Anal. Chem. 70, 2646- 2650 ( 1998).
[CrossRef] [PubMed]

S. Pilevar, K. Edinger, W. Atia, I. Smolyaninov, and C. Davis, " Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy," Appl. Phys. Lett. 72, 3133- 3135 ( 1998).
[CrossRef]

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, " High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling," Appl. Phys. Lett. 72, 3115- 3117 ( 1998).
[CrossRef]

1996 (2)

S. Monomode and M. Ohtsu, " Fabrication of pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231- 2235 ( 1996).
[CrossRef]

E. B. McDaniel and J. W. P. Hsu, " Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals," J. Appl. Phys. 80, 1085- 1093 ( 1996).
[CrossRef]

1995 (3)

J. A. Cline and M. Isaacson, " Probe-sample interactions in reflection near-field scanning optical microscopy," Appl. Opt. 3, 4869- 4876 ( 1995).
[CrossRef]

G. A. Valaskovic, "Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes," Appl. Opt. 34, 1215-1228 (1995).
[CrossRef] [PubMed]

P. Hoffmann, B. Dutoit, and R. P. Salath, " Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165- 170 ( 1995).
[CrossRef]

1992 (1)

1991 (1)

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. L. Kostelak, " Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468- 1470 ( 1991).
[CrossRef] [PubMed]

1984 (2)

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, " Development of a 500-Å spatial-resolution light-microscope," Ultramicroscopy 13, 227- 231 ( 1984).
[CrossRef]

D. Pohl, W. Denk, and M. Lanz, " Optical stethoscopy: image recording with resolution," Appl. Phys. Lett. 44, 651- 653 ( 1984).
[CrossRef]

Atia, W.

S. Pilevar, K. Edinger, W. Atia, I. Smolyaninov, and C. Davis, " Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy," Appl. Phys. Lett. 72, 3133- 3135 ( 1998).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, " Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 31, 4563- 4568 ( 1992).
[CrossRef] [PubMed]

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. L. Kostelak, " Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468- 1470 ( 1991).
[CrossRef] [PubMed]

Cline, J. A.

J. A. Cline and M. Isaacson, " Probe-sample interactions in reflection near-field scanning optical microscopy," Appl. Opt. 3, 4869- 4876 ( 1995).
[CrossRef]

Davis, C.

S. Pilevar, K. Edinger, W. Atia, I. Smolyaninov, and C. Davis, " Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy," Appl. Phys. Lett. 72, 3133- 3135 ( 1998).
[CrossRef]

Deckert, V.

V. Deckert, D. Ziesel, R. Zenobi, and T. Vo-Dinh, " Near-field surface-enhanced Raman of dye-labeled DNA with 100-nm resolution," Anal. Chem. 70, 2646- 2650 ( 1998).
[CrossRef] [PubMed]

Denk, W.

D. Pohl, W. Denk, and M. Lanz, " Optical stethoscopy: image recording with resolution," Appl. Phys. Lett. 44, 651- 653 ( 1984).
[CrossRef]

Dutoit, B.

P. Hoffmann, B. Dutoit, and R. P. Salath, " Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165- 170 ( 1995).
[CrossRef]

Dyott, R.

R. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).

Edinger, K.

S. Pilevar, K. Edinger, W. Atia, I. Smolyaninov, and C. Davis, " Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy," Appl. Phys. Lett. 72, 3133- 3135 ( 1998).
[CrossRef]

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, " Development of a 500-Å spatial-resolution light-microscope," Ultramicroscopy 13, 227- 231 ( 1984).
[CrossRef]

Harris, T.

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. L. Kostelak, " Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468- 1470 ( 1991).
[CrossRef] [PubMed]

Harris, T. D.

Hoffmann, P.

P. Hoffmann, B. Dutoit, and R. P. Salath, " Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165- 170 ( 1995).
[CrossRef]

Hosaka, N.

N. Hosaka and T. Saiki, " Near-field fluorescence imaging of single molecules with a resolution in the range of 10 nm," J. Microsc. 202, 362- 364 ( 2001).
[CrossRef] [PubMed]

Hsu, J. W. P.

E. B. McDaniel and J. W. P. Hsu, " Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals," J. Appl. Phys. 80, 1085- 1093 ( 1996).
[CrossRef]

Isaacson, M.

J. A. Cline and M. Isaacson, " Probe-sample interactions in reflection near-field scanning optical microscopy," Appl. Opt. 3, 4869- 4876 ( 1995).
[CrossRef]

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, " Development of a 500-Å spatial-resolution light-microscope," Ultramicroscopy 13, 227- 231 ( 1984).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. L. Kostelak, " Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468- 1470 ( 1991).
[CrossRef] [PubMed]

Kuipers, L.

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, " High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling," Appl. Phys. Lett. 72, 3115- 3117 ( 1998).
[CrossRef]

Lanz, M.

D. Pohl, W. Denk, and M. Lanz, " Optical stethoscopy: image recording with resolution," Appl. Phys. Lett. 44, 651- 653 ( 1984).
[CrossRef]

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, " Development of a 500-Å spatial-resolution light-microscope," Ultramicroscopy 13, 227- 231 ( 1984).
[CrossRef]

Mansuripur, M.

McDaniel, E. B.

E. B. McDaniel and J. W. P. Hsu, " Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals," J. Appl. Phys. 80, 1085- 1093 ( 1996).
[CrossRef]

Mitsui, T.

T. Mitsui, " Development of a polarization-preserving optical-fiber probe for near-field scanning optical microscopy and the influences of bending and squeezing on the polarization properties," Rev. Sci. Instrum. 76, 043,703 ( 2005).
[CrossRef]

T. Mitsui and T. Sekiguchi, " Observation of polarization property in near-field optical imaging by a polarization-maintaining fiber probe," J. Electron Microsc. 53(2), 209- 215 ( 2004).
[CrossRef]

Moloney, J.

Monomode, S.

S. Monomode and M. Ohtsu, " Fabrication of pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231- 2235 ( 1996).
[CrossRef]

Murray, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, " Development of a 500-Å spatial-resolution light-microscope," Ultramicroscopy 13, 227- 231 ( 1984).
[CrossRef]

Ohtsu, M.

S. Monomode and M. Ohtsu, " Fabrication of pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231- 2235 ( 1996).
[CrossRef]

M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer-Verlag, 1998).
[CrossRef]

Otter, A. M.

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, " High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling," Appl. Phys. Lett. 72, 3115- 3117 ( 1998).
[CrossRef]

Pilevar, S.

S. Pilevar, K. Edinger, W. Atia, I. Smolyaninov, and C. Davis, " Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy," Appl. Phys. Lett. 72, 3133- 3135 ( 1998).
[CrossRef]

Pohl, D.

D. Pohl, W. Denk, and M. Lanz, " Optical stethoscopy: image recording with resolution," Appl. Phys. Lett. 44, 651- 653 ( 1984).
[CrossRef]

Saiki, T.

N. Hosaka and T. Saiki, " Near-field fluorescence imaging of single molecules with a resolution in the range of 10 nm," J. Microsc. 202, 362- 364 ( 2001).
[CrossRef] [PubMed]

Salath, R. P.

P. Hoffmann, B. Dutoit, and R. P. Salath, " Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165- 170 ( 1995).
[CrossRef]

Sekiguchi, T.

T. Mitsui and T. Sekiguchi, " Observation of polarization property in near-field optical imaging by a polarization-maintaining fiber probe," J. Electron Microsc. 53(2), 209- 215 ( 2004).
[CrossRef]

Smolyaninov, I.

S. Pilevar, K. Edinger, W. Atia, I. Smolyaninov, and C. Davis, " Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy," Appl. Phys. Lett. 72, 3133- 3135 ( 1998).
[CrossRef]

Trautman, J.

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. L. Kostelak, " Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468- 1470 ( 1991).
[CrossRef] [PubMed]

Trautman, J. K.

Valaskovic, G. A.

van Hulst, N. F.

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, " High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling," Appl. Phys. Lett. 72, 3115- 3117 ( 1998).
[CrossRef]

Veerman, J. A.

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, " High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling," Appl. Phys. Lett. 72, 3115- 3117 ( 1998).
[CrossRef]

Vo-Dinh, T.

V. Deckert, D. Ziesel, R. Zenobi, and T. Vo-Dinh, " Near-field surface-enhanced Raman of dye-labeled DNA with 100-nm resolution," Anal. Chem. 70, 2646- 2650 ( 1998).
[CrossRef] [PubMed]

Weiner, J.

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. L. Kostelak, " Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468- 1470 ( 1991).
[CrossRef] [PubMed]

Weiner, J. S.

Wolfe, R.

Zakharian, A.

Zenobi, R.

V. Deckert, D. Ziesel, R. Zenobi, and T. Vo-Dinh, " Near-field surface-enhanced Raman of dye-labeled DNA with 100-nm resolution," Anal. Chem. 70, 2646- 2650 ( 1998).
[CrossRef] [PubMed]

Ziesel, D.

V. Deckert, D. Ziesel, R. Zenobi, and T. Vo-Dinh, " Near-field surface-enhanced Raman of dye-labeled DNA with 100-nm resolution," Anal. Chem. 70, 2646- 2650 ( 1998).
[CrossRef] [PubMed]

Anal. Chem. (1)

V. Deckert, D. Ziesel, R. Zenobi, and T. Vo-Dinh, " Near-field surface-enhanced Raman of dye-labeled DNA with 100-nm resolution," Anal. Chem. 70, 2646- 2650 ( 1998).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

S. Pilevar, K. Edinger, W. Atia, I. Smolyaninov, and C. Davis, " Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy," Appl. Phys. Lett. 72, 3133- 3135 ( 1998).
[CrossRef]

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, " High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling," Appl. Phys. Lett. 72, 3115- 3117 ( 1998).
[CrossRef]

D. Pohl, W. Denk, and M. Lanz, " Optical stethoscopy: image recording with resolution," Appl. Phys. Lett. 44, 651- 653 ( 1984).
[CrossRef]

J. Appl. Phys. (1)

E. B. McDaniel and J. W. P. Hsu, " Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals," J. Appl. Phys. 80, 1085- 1093 ( 1996).
[CrossRef]

J. Electron Microsc. (1)

T. Mitsui and T. Sekiguchi, " Observation of polarization property in near-field optical imaging by a polarization-maintaining fiber probe," J. Electron Microsc. 53(2), 209- 215 ( 2004).
[CrossRef]

J. Lightwave Technol. (1)

S. Monomode and M. Ohtsu, " Fabrication of pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231- 2235 ( 1996).
[CrossRef]

J. Microsc. (1)

N. Hosaka and T. Saiki, " Near-field fluorescence imaging of single molecules with a resolution in the range of 10 nm," J. Microsc. 202, 362- 364 ( 2001).
[CrossRef] [PubMed]

Opt. Express (1)

Rev. Sci. Instrum. (1)

T. Mitsui, " Development of a polarization-preserving optical-fiber probe for near-field scanning optical microscopy and the influences of bending and squeezing on the polarization properties," Rev. Sci. Instrum. 76, 043,703 ( 2005).
[CrossRef]

Science (1)

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. L. Kostelak, " Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468- 1470 ( 1991).
[CrossRef] [PubMed]

Ultramicroscopy (2)

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, " Development of a 500-Å spatial-resolution light-microscope," Ultramicroscopy 13, 227- 231 ( 1984).
[CrossRef]

P. Hoffmann, B. Dutoit, and R. P. Salath, " Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165- 170 ( 1995).
[CrossRef]

Other (2)

R. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).

M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer-Verlag, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Schematic diagram of the etching process. The core of the fiber is tapered down by selective-chemical etching. After 10 hours, the meniscus will drop down when it starts etching the fluorine-doped cladding. The drawing on the right illustrates the end result.

Fig. 2
Fig. 2

(top) SEM image of the uncoated probe. Preferential etching leads to a noncircular plateau. (bottom) An SEM image of the tip after FIB milling. The aperture has dimensions of about 55 ± 5 nm by 225 ± 5 nm.

Fig. 3
Fig. 3

(top) Output intensity of the probe shown in Fig. 2 as a function of input polarization. (bottom) The polarization extinction of the same probe for a fixed input polarization.

Fig. 4
Fig. 4

Throughput as a function of the minor-axis dimension. The aspect ratios of the tips were around 4.5 except for the probe with minor axis dimension of 144 nm, which had an aspect ratio of about 3.25.

Fig. 5
Fig. 5

(Color online) NSOM images of gold dots on a GaAs substrate. The top is an optical intensity image. The bottom is a topographic image.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = T cos 2 θ + T sin 2 θ ,

Metrics