Abstract

Many chromophores with a large two-photon absorptive cross section are hybrid materials where the two-photon absorption (TPA) is coupled to an excited-state absorption (ESA). We develop a numerical technique to investigate hybrid two-photon processes in nonlinear absorbers. Our numerical method compares well with published results. In addition to customary calculation of the transmission curve, we demonstrate the importance of the ESA following the TPA, which may cause significant temporal and radial distortion. We also show that improvements in the transmission can result in significant radial and temporal pulse distortion, which may actually reduce the material effect.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Silly, L. Porres, O. Mongin, P. A. Chollet, and M. Blanchard-Desce, "Optical limiting in the red-NIR range with soluble two-photon absorbing molecules," Chem. Phys. Lett. 379, 74-80 (2003).
    [CrossRef]
  2. K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, "Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin," J. Am. Chem. Soc. 125, 13356-13357 (2003).
    [CrossRef] [PubMed]
  3. J. Yoo, S. K. Yang, M. Jeong, H. C. Ahn, S. Jeon, and B. R. Cho, "Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections," Org. Lett. 5, 645-648 (2003).
    [CrossRef] [PubMed]
  4. H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
    [CrossRef]
  5. B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
    [CrossRef]
  6. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  7. S. Maruo and S. J. Kawata, "Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication," J. Microelectromech. Syst. 7, 411-422 (1998).
    [CrossRef]
  8. S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999).
    [CrossRef]
  9. C. Diamond, Y. Boiko, and S. Esener, "Two-photon holography in a 3D photopolymer host-guest matrix," Opt. Express 6, 64-68 (2000).
    [CrossRef] [PubMed]
  10. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
    [CrossRef] [PubMed]
  11. M. O. Stone, J. W. Baur, L. A. Sowards, and S. M. Kirkpatrick, "Ultrafast holographic recording of snake infrared pit tissue using two-photon induced photopolymerization," in Proc. SPIE 3934, 36-42 (2000).
  12. S. M. Kirkpatrick, E. K. Peterman, G. T. Anderson, J. E. Franklin, and J. W. Baur, "Nonlinear photophysics and charge generation of donor-acceptor two-photon absorbing dyes," in Proc. SPIE 4797, 220-228 (2003).
  13. F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001).
    [CrossRef] [PubMed]
  14. T. Misteli and D. L. Spector, "Applications of the green fluorescent protein in cell biology and biotechnology," Nat. Biotechnol. 15, 961-964 (1997).
    [CrossRef] [PubMed]
  15. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003).
    [CrossRef] [PubMed]
  16. B. J. Bacskai, J. Skoch, G. A. Hickey, R. Allen, and B. T. Hyman, "Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques," J. Biomed. Opt. 8, 368-375 (2003).
    [CrossRef] [PubMed]
  17. J. W. Perry, "Organic and metal-containing reverse saturable absorbers for optical limiters," in Nonlinear Optics of Organic Molecules and Polymers, H.S.Nalwa and S.Miyata, eds. (CRC Press, 1997), pp. 813-839.
  18. G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433-2435 (1995).
    [CrossRef]
  19. M. Stone and R. Naik, Encyclopedia of Smart Materials (Wiley, 2000).
  20. L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
    [CrossRef] [PubMed]
  21. F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
    [CrossRef]
  22. S. M. Kirkpatrick, C. Clark, and R. L. Sutherland, "Single state absorption spectra of novel nonlinear optical materials," Mater. Res. Soc. Symp. Proc. 598, 77-85 (2000).
  23. D. G. Mclean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, and T. Pottenger, "Nonlinear absorption study of C60-toluene solution," Opt. Lett. 18, 858-860 (1993).
    [CrossRef] [PubMed]
  24. K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995).
    [CrossRef]
  25. C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
    [CrossRef] [PubMed]
  26. I. C. Khoo, A. Diaz, and J. Ding, "Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses," J. Opt. Soc. Am. B 21, 1234-1240 (2004).
    [CrossRef]
  27. R. Lepkowicz, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, "Picosecond optical limiting in reverse saturable absorbers: a theoretical and experimental study," J. Opt. Soc. Am. B 19, 94-101 (2002).
    [CrossRef]
  28. T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, "Nonlinear response and optical limiting in inorganic metal cluster Mo2Ag4S8(PPh3)4 solutions," J. Opt. Soc. Am. B 15, 1497-1501 (1998).
    [CrossRef]
  29. I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array," IEEE J. Quantum Electron. 7, 760-768 (2001).
    [CrossRef]
  30. G. Witzgall, R. Vrijen, and E. Yablonovitch, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures," Opt. Let. 23, 1745-1747 (1998).
    [CrossRef]
  31. C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, "Efficient initiators for two-photon induced polymerization in the visible range," Chem. Phys. Lett. 362, 291-295 (2002).
    [CrossRef]
  32. L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004).
    [CrossRef]
  33. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rochel, S. R. Marder, and J. W. Perry, "Two-photon absorption and broadband optical limiting with bis-donor stilbenes," Opt. Lett. 22, 1843-1845 (1997).
    [CrossRef]
  34. R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003).
    [CrossRef]
  35. M. J. Potasek and Y. Gao, "Detailed simulation of two-photon absorption for 3D micro-nano engineering and patterning," in Proc. SPIE 5592, 389-399 (2005).
  36. S. Kim, D. McLaughlin, and M. Potasek, "Propagation of the electromagnetic field in optical-limiting reverse-saturable absorbers," Phys. Rev. A 61, 025801-025804 (2000).
    [CrossRef]
  37. M. J. Potasek, S. Kim, and D. McLaughlin, "All optical power limiting," J. Nonlinear Opt. Phys. Mater. 9, 343-364 (2000).
    [CrossRef]
  38. G. S. He, J. Swiatkiewicz, Y. Jiang, and P. N. Prasad, "Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium," J. Phys. Chem. A 104, 4805-4810 (2000).
    [CrossRef]
  39. S. Delysse, P. Filloux, V. Dumarcher, C. Fiorini, and J.-M. Nunzi, "Multiphoton absorption in organic dye solutions," Opt. Mater. 9, 347-351 (1998).
    [CrossRef]

2004 (2)

I. C. Khoo, A. Diaz, and J. Ding, "Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses," J. Opt. Soc. Am. B 21, 1234-1240 (2004).
[CrossRef]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

2003 (6)

R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003).
[CrossRef]

M. G. Silly, L. Porres, O. Mongin, P. A. Chollet, and M. Blanchard-Desce, "Optical limiting in the red-NIR range with soluble two-photon absorbing molecules," Chem. Phys. Lett. 379, 74-80 (2003).
[CrossRef]

K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, "Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin," J. Am. Chem. Soc. 125, 13356-13357 (2003).
[CrossRef] [PubMed]

J. Yoo, S. K. Yang, M. Jeong, H. C. Ahn, S. Jeon, and B. R. Cho, "Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections," Org. Lett. 5, 645-648 (2003).
[CrossRef] [PubMed]

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003).
[CrossRef] [PubMed]

B. J. Bacskai, J. Skoch, G. A. Hickey, R. Allen, and B. T. Hyman, "Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques," J. Biomed. Opt. 8, 368-375 (2003).
[CrossRef] [PubMed]

2002 (3)

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

R. Lepkowicz, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, "Picosecond optical limiting in reverse saturable absorbers: a theoretical and experimental study," J. Opt. Soc. Am. B 19, 94-101 (2002).
[CrossRef]

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, "Efficient initiators for two-photon induced polymerization in the visible range," Chem. Phys. Lett. 362, 291-295 (2002).
[CrossRef]

2001 (4)

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array," IEEE J. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
[CrossRef] [PubMed]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001).
[CrossRef] [PubMed]

2000 (5)

C. Diamond, Y. Boiko, and S. Esener, "Two-photon holography in a 3D photopolymer host-guest matrix," Opt. Express 6, 64-68 (2000).
[CrossRef] [PubMed]

S. M. Kirkpatrick, C. Clark, and R. L. Sutherland, "Single state absorption spectra of novel nonlinear optical materials," Mater. Res. Soc. Symp. Proc. 598, 77-85 (2000).

S. Kim, D. McLaughlin, and M. Potasek, "Propagation of the electromagnetic field in optical-limiting reverse-saturable absorbers," Phys. Rev. A 61, 025801-025804 (2000).
[CrossRef]

M. J. Potasek, S. Kim, and D. McLaughlin, "All optical power limiting," J. Nonlinear Opt. Phys. Mater. 9, 343-364 (2000).
[CrossRef]

G. S. He, J. Swiatkiewicz, Y. Jiang, and P. N. Prasad, "Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium," J. Phys. Chem. A 104, 4805-4810 (2000).
[CrossRef]

1999 (3)

S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999).
[CrossRef]

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

1998 (4)

S. Maruo and S. J. Kawata, "Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication," J. Microelectromech. Syst. 7, 411-422 (1998).
[CrossRef]

S. Delysse, P. Filloux, V. Dumarcher, C. Fiorini, and J.-M. Nunzi, "Multiphoton absorption in organic dye solutions," Opt. Mater. 9, 347-351 (1998).
[CrossRef]

G. Witzgall, R. Vrijen, and E. Yablonovitch, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures," Opt. Let. 23, 1745-1747 (1998).
[CrossRef]

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, "Nonlinear response and optical limiting in inorganic metal cluster Mo2Ag4S8(PPh3)4 solutions," J. Opt. Soc. Am. B 15, 1497-1501 (1998).
[CrossRef]

1997 (2)

1995 (2)

K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433-2435 (1995).
[CrossRef]

1994 (1)

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

1993 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Ahn, H. C.

J. Yoo, S. K. Yang, M. Jeong, H. C. Ahn, S. Jeon, and B. R. Cho, "Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections," Org. Lett. 5, 645-648 (2003).
[CrossRef] [PubMed]

Alain, V.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

Allen, R.

B. J. Bacskai, J. Skoch, G. A. Hickey, R. Allen, and B. T. Hyman, "Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques," J. Biomed. Opt. 8, 368-375 (2003).
[CrossRef] [PubMed]

Ananthavel, S.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Anderson, G. T.

S. M. Kirkpatrick, E. K. Peterman, G. T. Anderson, J. E. Franklin, and J. W. Baur, "Nonlinear photophysics and charge generation of donor-acceptor two-photon absorbing dyes," in Proc. SPIE 4797, 220-228 (2003).

Andraud, C.

R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003).
[CrossRef]

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, "Efficient initiators for two-photon induced polymerization in the visible range," Chem. Phys. Lett. 362, 291-295 (2002).
[CrossRef]

Anemian, R.

R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003).
[CrossRef]

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, "Efficient initiators for two-photon induced polymerization in the visible range," Chem. Phys. Lett. 362, 291-295 (2002).
[CrossRef]

Bacskai, B. J.

B. J. Bacskai, J. Skoch, G. A. Hickey, R. Allen, and B. T. Hyman, "Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques," J. Biomed. Opt. 8, 368-375 (2003).
[CrossRef] [PubMed]

Baldech, P. L.

R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003).
[CrossRef]

Baldeck, P. L.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, "Efficient initiators for two-photon induced polymerization in the visible range," Chem. Phys. Lett. 362, 291-295 (2002).
[CrossRef]

Barlow, S.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Bauer, C. A.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

Baur, J. W.

S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999).
[CrossRef]

M. O. Stone, J. W. Baur, L. A. Sowards, and S. M. Kirkpatrick, "Ultrafast holographic recording of snake infrared pit tissue using two-photon induced photopolymerization," in Proc. SPIE 3934, 36-42 (2000).

S. M. Kirkpatrick, E. K. Peterman, G. T. Anderson, J. E. Franklin, and J. W. Baur, "Nonlinear photophysics and charge generation of donor-acceptor two-photon absorbing dyes," in Proc. SPIE 4797, 220-228 (2003).

Bhawalkar, J. D.

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433-2435 (1995).
[CrossRef]

Blanchard-Desce, M.

M. G. Silly, L. Porres, O. Mongin, P. A. Chollet, and M. Blanchard-Desce, "Optical limiting in the red-NIR range with soluble two-photon absorbing molecules," Chem. Phys. Lett. 379, 74-80 (2003).
[CrossRef]

Boiko, Y.

Bouriau, M.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, "Efficient initiators for two-photon induced polymerization in the visible range," Chem. Phys. Lett. 362, 291-295 (2002).
[CrossRef]

Brandelik, D. M.

Brant, M. C.

Brott, L. L.

L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
[CrossRef] [PubMed]

Chan, F. K.

F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001).
[CrossRef] [PubMed]

Chen, P. H.

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array," IEEE J. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

Cho, B. R.

J. Yoo, S. K. Yang, M. Jeong, H. C. Ahn, S. Jeon, and B. R. Cho, "Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections," Org. Lett. 5, 645-648 (2003).
[CrossRef] [PubMed]

Chollet, P. A.

M. G. Silly, L. Porres, O. Mongin, P. A. Chollet, and M. Blanchard-Desce, "Optical limiting in the red-NIR range with soluble two-photon absorbing molecules," Chem. Phys. Lett. 379, 74-80 (2003).
[CrossRef]

Clark, C.

S. M. Kirkpatrick, C. Clark, and R. L. Sutherland, "Single state absorption spectra of novel nonlinear optical materials," Mater. Res. Soc. Symp. Proc. 598, 77-85 (2000).

Clark, C. M.

S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999).
[CrossRef]

Clarkson, S. J.

L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
[CrossRef] [PubMed]

Cumpston, B. H.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Delysse, S.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiorini, and J.-M. Nunzi, "Multiphoton absorption in organic dye solutions," Opt. Mater. 9, 347-351 (1998).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Denny, L. R.

S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999).
[CrossRef]

Diamond, C.

Diaz, A.

I. C. Khoo, A. Diaz, and J. Ding, "Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses," J. Opt. Soc. Am. B 21, 1234-1240 (2004).
[CrossRef]

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array," IEEE J. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

Dickinson, M. E.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003).
[CrossRef] [PubMed]

Ding, J.

Dogariu, A.

Dumarcher, V.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiorini, and J.-M. Nunzi, "Multiphoton absorption in organic dye solutions," Opt. Mater. 9, 347-351 (1998).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rochel, S. R. Marder, and J. W. Perry, "Two-photon absorption and broadband optical limiting with bis-donor stilbenes," Opt. Lett. 22, 1843-1845 (1997).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Esener, S.

Filloux, P.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiorini, and J.-M. Nunzi, "Multiphoton absorption in organic dye solutions," Opt. Mater. 9, 347-351 (1998).
[CrossRef]

Fiorini, C.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiorini, and J.-M. Nunzi, "Multiphoton absorption in organic dye solutions," Opt. Mater. 9, 347-351 (1998).
[CrossRef]

Fleitz, P. A.

Franklin, J. E.

S. M. Kirkpatrick, E. K. Peterman, G. T. Anderson, J. E. Franklin, and J. W. Baur, "Nonlinear photophysics and charge generation of donor-acceptor two-photon absorbing dyes," in Proc. SPIE 4797, 220-228 (2003).

Fraser, S. E.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003).
[CrossRef] [PubMed]

Gao, Y.

M. J. Potasek and Y. Gao, "Detailed simulation of two-photon absorption for 3D micro-nano engineering and patterning," in Proc. SPIE 5592, 389-399 (2005).

Hagan, D. J.

He, G. S.

G. S. He, J. Swiatkiewicz, Y. Jiang, and P. N. Prasad, "Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium," J. Phys. Chem. A 104, 4805-4810 (2000).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433-2435 (1995).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Hickey, G. A.

B. J. Bacskai, J. Skoch, G. A. Hickey, R. Allen, and B. T. Hyman, "Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques," J. Biomed. Opt. 8, 368-375 (2003).
[CrossRef] [PubMed]

Hollins, R. C.

K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995).
[CrossRef]

Holmes, K. L.

F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001).
[CrossRef] [PubMed]

Hu, Z.-Y.

Hughes, S.

K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995).
[CrossRef]

Hyman, B. T.

B. J. Bacskai, J. Skoch, G. A. Hickey, R. Allen, and B. T. Hyman, "Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques," J. Biomed. Opt. 8, 368-375 (2003).
[CrossRef] [PubMed]

Jeon, S.

J. Yoo, S. K. Yang, M. Jeong, H. C. Ahn, S. Jeon, and B. R. Cho, "Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections," Org. Lett. 5, 645-648 (2003).
[CrossRef] [PubMed]

Jeong, M.

J. Yoo, S. K. Yang, M. Jeong, H. C. Ahn, S. Jeon, and B. R. Cho, "Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections," Org. Lett. 5, 645-648 (2003).
[CrossRef] [PubMed]

Jiang, Y.

G. S. He, J. Swiatkiewicz, Y. Jiang, and P. N. Prasad, "Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium," J. Phys. Chem. A 104, 4805-4810 (2000).
[CrossRef]

Joshi, M. P.

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

Kamada, K.

K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, "Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin," J. Am. Chem. Soc. 125, 13356-13357 (2003).
[CrossRef] [PubMed]

Kannan, R.

S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999).
[CrossRef]

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Kawata, S. J.

S. Maruo and S. J. Kawata, "Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication," J. Microelectromech. Syst. 7, 411-422 (1998).
[CrossRef]

Khoo, I. C.

I. C. Khoo, A. Diaz, and J. Ding, "Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses," J. Opt. Soc. Am. B 21, 1234-1240 (2004).
[CrossRef]

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array," IEEE J. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

Kim, S.

M. J. Potasek, S. Kim, and D. McLaughlin, "All optical power limiting," J. Nonlinear Opt. Phys. Mater. 9, 343-364 (2000).
[CrossRef]

S. Kim, D. McLaughlin, and M. Potasek, "Propagation of the electromagnetic field in optical-limiting reverse-saturable absorbers," Phys. Rev. A 61, 025801-025804 (2000).
[CrossRef]

Kirkpatrick, S. M.

L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
[CrossRef] [PubMed]

S. M. Kirkpatrick, C. Clark, and R. L. Sutherland, "Single state absorption spectra of novel nonlinear optical materials," Mater. Res. Soc. Symp. Proc. 598, 77-85 (2000).

S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999).
[CrossRef]

M. O. Stone, J. W. Baur, L. A. Sowards, and S. M. Kirkpatrick, "Ultrafast holographic recording of snake infrared pit tissue using two-photon induced photopolymerization," in Proc. SPIE 3934, 36-42 (2000).

S. M. Kirkpatrick, E. K. Peterman, G. T. Anderson, J. E. Franklin, and J. W. Baur, "Nonlinear photophysics and charge generation of donor-acceptor two-photon absorbing dyes," in Proc. SPIE 4797, 220-228 (2003).

Kobuke, Y.

K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, "Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin," J. Am. Chem. Soc. 125, 13356-13357 (2003).
[CrossRef] [PubMed]

Kobyakov, A.

Kretsch, K.

R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003).
[CrossRef]

Kuebler, S. M.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Lee, I. Y.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Lee, I.-Y. S.

Lenardo, M. J.

F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001).
[CrossRef] [PubMed]

Lepkowicz, R.

Li, C.

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Mansour, K.

Marder, S. R.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rochel, S. R. Marder, and J. W. Perry, "Two-photon absorption and broadband optical limiting with bis-donor stilbenes," Opt. Lett. 22, 1843-1845 (1997).
[CrossRef]

Martineau, C.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, "Efficient initiators for two-photon induced polymerization in the visible range," Chem. Phys. Lett. 362, 291-295 (2002).
[CrossRef]

Maruo, S.

S. Maruo and S. J. Kawata, "Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication," J. Microelectromech. Syst. 7, 411-422 (1998).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

McLaughlin, D.

S. Kim, D. McLaughlin, and M. Potasek, "Propagation of the electromagnetic field in optical-limiting reverse-saturable absorbers," Phys. Rev. A 61, 025801-025804 (2000).
[CrossRef]

M. J. Potasek, S. Kim, and D. McLaughlin, "All optical power limiting," J. Nonlinear Opt. Phys. Mater. 9, 343-364 (2000).
[CrossRef]

Mclean, D. G.

Meyer-Friedrichsen, T.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

Misteli, T.

T. Misteli and D. L. Spector, "Applications of the green fluorescent protein in cell biology and biotechnology," Nat. Biotechnol. 15, 961-964 (1997).
[CrossRef] [PubMed]

Mongin, O.

M. G. Silly, L. Porres, O. Mongin, P. A. Chollet, and M. Blanchard-Desce, "Optical limiting in the red-NIR range with soluble two-photon absorbing molecules," Chem. Phys. Lett. 379, 74-80 (2003).
[CrossRef]

Morel, Y.

R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003).
[CrossRef]

Naik, R.

M. Stone and R. Naik, Encyclopedia of Smart Materials (Wiley, 2000).

Naik, R. R.

L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
[CrossRef] [PubMed]

Nunzi, J. M.

R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003).
[CrossRef]

Nunzi, J.-M.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiorini, and J.-M. Nunzi, "Multiphoton absorption in organic dye solutions," Opt. Mater. 9, 347-351 (1998).
[CrossRef]

Ogawa, K.

K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, "Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin," J. Am. Chem. Soc. 125, 13356-13357 (2003).
[CrossRef] [PubMed]

Ohashi, A.

K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, "Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin," J. Am. Chem. Soc. 125, 13356-13357 (2003).
[CrossRef] [PubMed]

Ohta, K.

K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, "Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin," J. Am. Chem. Soc. 125, 13356-13357 (2003).
[CrossRef] [PubMed]

Paci, B.

R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003).
[CrossRef]

Perry, J. W.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rochel, S. R. Marder, and J. W. Perry, "Two-photon absorption and broadband optical limiting with bis-donor stilbenes," Opt. Lett. 22, 1843-1845 (1997).
[CrossRef]

J. W. Perry, "Organic and metal-containing reverse saturable absorbers for optical limiters," in Nonlinear Optics of Organic Molecules and Polymers, H.S.Nalwa and S.Miyata, eds. (CRC Press, 1997), pp. 813-839.

Peterman, E. K.

S. M. Kirkpatrick, E. K. Peterman, G. T. Anderson, J. E. Franklin, and J. W. Baur, "Nonlinear photophysics and charge generation of donor-acceptor two-photon absorbing dyes," in Proc. SPIE 4797, 220-228 (2003).

Pikas, D. J.

L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
[CrossRef] [PubMed]

Pond, S. J. K.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

Porres, L.

M. G. Silly, L. Porres, O. Mongin, P. A. Chollet, and M. Blanchard-Desce, "Optical limiting in the red-NIR range with soluble two-photon absorbing molecules," Chem. Phys. Lett. 379, 74-80 (2003).
[CrossRef]

Potasek, M.

S. Kim, D. McLaughlin, and M. Potasek, "Propagation of the electromagnetic field in optical-limiting reverse-saturable absorbers," Phys. Rev. A 61, 025801-025804 (2000).
[CrossRef]

Potasek, M. J.

M. J. Potasek, S. Kim, and D. McLaughlin, "All optical power limiting," J. Nonlinear Opt. Phys. Mater. 9, 343-364 (2000).
[CrossRef]

M. J. Potasek and Y. Gao, "Detailed simulation of two-photon absorption for 3D micro-nano engineering and patterning," in Proc. SPIE 5592, 389-399 (2005).

Pottenger, T.

Prasad, P. N.

G. S. He, J. Swiatkiewicz, Y. Jiang, and P. N. Prasad, "Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium," J. Phys. Chem. A 104, 4805-4810 (2000).
[CrossRef]

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433-2435 (1995).
[CrossRef]

Pudavar, H. E.

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

Qin, J.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Reinhardt, B. A.

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

Reinhardt, B. R.

S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999).
[CrossRef]

Richardson, K.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

Richardson, M.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

Rochel, H.

Rockel, H.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Said, A. A.

Shah, L.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

Siegel, R. M.

F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001).
[CrossRef] [PubMed]

Silly, M. G.

M. G. Silly, L. Porres, O. Mongin, P. A. Chollet, and M. Blanchard-Desce, "Optical limiting in the red-NIR range with soluble two-photon absorbing molecules," Chem. Phys. Lett. 379, 74-80 (2003).
[CrossRef]

Simbuerger, E.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003).
[CrossRef] [PubMed]

Skoch, J.

B. J. Bacskai, J. Skoch, G. A. Hickey, R. Allen, and B. T. Hyman, "Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques," J. Biomed. Opt. 8, 368-375 (2003).
[CrossRef] [PubMed]

Sowards, L. A.

M. O. Stone, J. W. Baur, L. A. Sowards, and S. M. Kirkpatrick, "Ultrafast holographic recording of snake infrared pit tissue using two-photon induced photopolymerization," in Proc. SPIE 3934, 36-42 (2000).

Spector, D. L.

T. Misteli and D. L. Spector, "Applications of the green fluorescent protein in cell biology and biotechnology," Nat. Biotechnol. 15, 961-964 (1997).
[CrossRef] [PubMed]

Spruce, G.

K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995).
[CrossRef]

Stellacci, F.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

Stone, M.

M. Stone and R. Naik, Encyclopedia of Smart Materials (Wiley, 2000).

Stone, M. O.

L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
[CrossRef] [PubMed]

S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999).
[CrossRef]

M. O. Stone, J. W. Baur, L. A. Sowards, and S. M. Kirkpatrick, "Ultrafast holographic recording of snake infrared pit tissue using two-photon induced photopolymerization," in Proc. SPIE 3934, 36-42 (2000).

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Sutherland, R. L.

S. M. Kirkpatrick, C. Clark, and R. L. Sutherland, "Single state absorption spectra of novel nonlinear optical materials," Mater. Res. Soc. Symp. Proc. 598, 77-85 (2000).

D. G. Mclean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, and T. Pottenger, "Nonlinear absorption study of C60-toluene solution," Opt. Lett. 18, 858-860 (1993).
[CrossRef] [PubMed]

Swatton, S. N. R.

K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995).
[CrossRef]

Swiatkiewicz, J.

G. S. He, J. Swiatkiewicz, Y. Jiang, and P. N. Prasad, "Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium," J. Phys. Chem. A 104, 4805-4810 (2000).
[CrossRef]

Swofford, R.

F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Tawney, J.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

Till, S. J.

K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995).
[CrossRef]

Tomlin, D. W.

L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
[CrossRef] [PubMed]

Tsien, R. Y.

F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001).
[CrossRef] [PubMed]

Van Stryland, E. W.

Vrijen, R.

G. Witzgall, R. Vrijen, and E. Yablonovitch, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures," Opt. Let. 23, 1745-1747 (1998).
[CrossRef]

Wang, H.

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Wang, I.

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, "Efficient initiators for two-photon induced polymerization in the visible range," Chem. Phys. Lett. 362, 291-295 (2002).
[CrossRef]

Wang, Y.

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Waters, C. W.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Welford, K. R.

K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995).
[CrossRef]

Wenseleers, W.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

Wherrett, B. S.

K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995).
[CrossRef]

Whitlock, P. W.

L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
[CrossRef] [PubMed]

Witzgall, G.

G. Witzgall, R. Vrijen, and E. Yablonovitch, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures," Opt. Let. 23, 1745-1747 (1998).
[CrossRef]

Wood, M. V.

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array," IEEE J. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

Wu, X. L.

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rochel, S. R. Marder, and J. W. Perry, "Two-photon absorption and broadband optical limiting with bis-donor stilbenes," Opt. Lett. 22, 1843-1845 (1997).
[CrossRef]

Xia, T.

Yablonovitch, E.

G. Witzgall, R. Vrijen, and E. Yablonovitch, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures," Opt. Let. 23, 1745-1747 (1998).
[CrossRef]

Yang, M.

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Yang, S. K.

J. Yoo, S. K. Yang, M. Jeong, H. C. Ahn, S. Jeon, and B. R. Cho, "Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections," Org. Lett. 5, 645-648 (2003).
[CrossRef] [PubMed]

Yoo, J.

J. Yoo, S. K. Yang, M. Jeong, H. C. Ahn, S. Jeon, and B. R. Cho, "Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections," Org. Lett. 5, 645-648 (2003).
[CrossRef] [PubMed]

Zacharias, D.

F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001).
[CrossRef] [PubMed]

Zhang, L.

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Zhang, Y.

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

Zhao, C. F.

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433-2435 (1995).
[CrossRef]

Zimmermann, B.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003).
[CrossRef] [PubMed]

Adv. Mater. (1)

F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002).
[CrossRef]

Appl. Phys. A (1)

S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433-2435 (1995).
[CrossRef]

Chem. Phys. Lett. (2)

M. G. Silly, L. Porres, O. Mongin, P. A. Chollet, and M. Blanchard-Desce, "Optical limiting in the red-NIR range with soluble two-photon absorbing molecules," Chem. Phys. Lett. 379, 74-80 (2003).
[CrossRef]

C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, "Efficient initiators for two-photon induced polymerization in the visible range," Chem. Phys. Lett. 362, 291-295 (2002).
[CrossRef]

Cytometry (1)

F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array," IEEE J. Quantum Electron. 7, 760-768 (2001).
[CrossRef]

J. Am. Chem. Soc. (1)

K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, "Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin," J. Am. Chem. Soc. 125, 13356-13357 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003).
[CrossRef] [PubMed]

B. J. Bacskai, J. Skoch, G. A. Hickey, R. Allen, and B. T. Hyman, "Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques," J. Biomed. Opt. 8, 368-375 (2003).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003).
[CrossRef]

J. Microelectromech. Syst. (1)

S. Maruo and S. J. Kawata, "Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication," J. Microelectromech. Syst. 7, 411-422 (1998).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

M. J. Potasek, S. Kim, and D. McLaughlin, "All optical power limiting," J. Nonlinear Opt. Phys. Mater. 9, 343-364 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. A (1)

G. S. He, J. Swiatkiewicz, Y. Jiang, and P. N. Prasad, "Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium," J. Phys. Chem. A 104, 4805-4810 (2000).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (2)

S. M. Kirkpatrick, C. Clark, and R. L. Sutherland, "Single state absorption spectra of novel nonlinear optical materials," Mater. Res. Soc. Symp. Proc. 598, 77-85 (2000).

K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995).
[CrossRef]

Nat. Biotechnol. (1)

T. Misteli and D. L. Spector, "Applications of the green fluorescent protein in cell biology and biotechnology," Nat. Biotechnol. 15, 961-964 (1997).
[CrossRef] [PubMed]

Nature (3)

L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001).
[CrossRef] [PubMed]

B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Let. (1)

G. Witzgall, R. Vrijen, and E. Yablonovitch, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures," Opt. Let. 23, 1745-1747 (1998).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

S. Delysse, P. Filloux, V. Dumarcher, C. Fiorini, and J.-M. Nunzi, "Multiphoton absorption in organic dye solutions," Opt. Mater. 9, 347-351 (1998).
[CrossRef]

Org. Lett. (1)

J. Yoo, S. K. Yang, M. Jeong, H. C. Ahn, S. Jeon, and B. R. Cho, "Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections," Org. Lett. 5, 645-648 (2003).
[CrossRef] [PubMed]

Phys. Rev. A (2)

S. Kim, D. McLaughlin, and M. Potasek, "Propagation of the electromagnetic field in optical-limiting reverse-saturable absorbers," Phys. Rev. A 61, 025801-025804 (2000).
[CrossRef]

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994).
[CrossRef] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Other (5)

M. O. Stone, J. W. Baur, L. A. Sowards, and S. M. Kirkpatrick, "Ultrafast holographic recording of snake infrared pit tissue using two-photon induced photopolymerization," in Proc. SPIE 3934, 36-42 (2000).

S. M. Kirkpatrick, E. K. Peterman, G. T. Anderson, J. E. Franklin, and J. W. Baur, "Nonlinear photophysics and charge generation of donor-acceptor two-photon absorbing dyes," in Proc. SPIE 4797, 220-228 (2003).

M. Stone and R. Naik, Encyclopedia of Smart Materials (Wiley, 2000).

J. W. Perry, "Organic and metal-containing reverse saturable absorbers for optical limiters," in Nonlinear Optics of Organic Molecules and Polymers, H.S.Nalwa and S.Miyata, eds. (CRC Press, 1997), pp. 813-839.

M. J. Potasek and Y. Gao, "Detailed simulation of two-photon absorption for 3D micro-nano engineering and patterning," in Proc. SPIE 5592, 389-399 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagrams of various photon absorption processes. (a) One-photon absorption, (b) TPA, (c) TPA followed by one-photon absorption.

Fig. 2
Fig. 2

Energy-level diagram for the chromophore. The parameters are σTPA = 8.0 × 10−48 cm4 s photon−1, σESA = 2.0 × 10−16 cm2, k 10 = 1.8 × 10−3 ps−1, k 12 = 2 × 10−2 ps−1. The solid lines represent the photon absorptions and the dashed lines are the photon decays.

Fig. 3
Fig. 3

(Color online) Comparison of our numerical code with published work. The solid curve is our calculation. The diamonds were obtained from Ref. 1 and the squares correspond to the theoretical TPA calculation.

Fig. 4
Fig. 4

(Color online) Population density of the three levels of the molecular system as a function of time at r = 0. The solid curve corresponds to the population density on state N 0, the dotted curve to state N 1, and the dashed curve to N 2.

Fig. 5
Fig. 5

(Color online) Contour plots of the pulse intensity for input fluence of 1.25 J∕cm2, pulse width of 55 ps, and pulse beam radius of 50 μm at various sample thicknesses. The sidebar gives the scale for the plots. (a) The pulse at a sample thickness of 0 mm, (b) the pulse at a sample thickness of 2 mm, (c) the pulse at a sample thickness of 10 mm.

Fig. 6
Fig. 6

(Color online) Intensity as a function of time and radius for input fluence of 1.25 J∕cm2. The four propagation distances 0, 2, 6, and 10 mm are labeled in the figure. (a) Intensity as a function of time at r = 0, (b) intensity as a function of radius at t = 0.

Fig. 7
Fig. 7

(Color online) Transmission as a function of fluence at a wavelength of 740 nm. The excited-state decay times are τ21 = 50 and 5 ps.

Fig. 8
Fig. 8

(Color online) Contour plots for different excited-state lifetimes for a wavelength of 740 nm and input fluence of 2.5 J∕cm2. The sidebar gives the scale for the plots. (a) Values of the decay rates are given by τ21 = 50 ps and τ10 = 550 ps; (b) values of the decay rates are given by τ21 = 5 ps and τ10 = 550 ps.

Fig. 9
Fig. 9

(Color online) Intensity plots as a function of time and radius for a wavelength of 740 nm and input fluence of 2.5 J∕cm2. The excited-state decay times are τ21 = 50 and 5 ps. The TPA decay time is τ10 = 550 ps. (a) Intensity as a function of time at r = 0 for sample thicknesses of 2 and 10 mm, (b) intensity as a function of radius at t = 0 for a sample thickness of 10 mm.

Tables (1)

Tables Icon

Table 1 Material Parameters Used for Chromophores

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

N 0 t = σ TPA N 0 I 2 2 ω 0 + k 10 N 1 ,
N 1 t = σ TPA N 0 I 2 2 ω 0 - σ 12 N 1 1 ω 0 k 10 N 1 + k 21 N 2 ,
N 2 t = σ 12 N 1 1 ω 0 k 21 N 2 ,
d I d z = f ( z ) = σ TPA N 0 I 2 σ 12 N 1 I .
( z n + 1 2 , t i + 1 2 ) = exp ( t 0 t 1 2 t + 1 2 M ^ d t ) ( z n + 1 2 , t i 1 2 ) = k = 0 1 k ! ( R ^ ) k ( z n + 1 2 , t i 1 2 ) ,
R ^ = t 0 Δ t G ^ + H ^ t 0 Δ t ω 0 1 2 [ I ( z n , t i ) + I ( z n + 1 , t i ) ]  +  F ^ t 0 Δ t 2 ω 0 1 2 [ I 2 ( z n , t i ) + I 2 ( z n + 1 , t i ) ] ,
f ( z n , t i ) = N T 2 [ σ TPA ˜ 0 I 2 ( z n , t i ) + σ 12 ˜ 1 I ( z n , t i ) ] ,
˜ p = p ( z n + 1 2 , t i 1 2 ) + p ( z n + 1 2 , t i + 1 2 )
( k ) ( z n + 1 2 , t i + 1 2 ) = exp { t 0 Δ t G ^ + H ^ t 0 Δ t ω 0 × 1 2 [ I ( z n , t i ) + I ( k ) ( z n + 1 , t i ) ] + F ^ t 0 Δ t 2 ω 0 1 2 [ I 2 ( z n , t i ) + I ( k ) 2 ( z n + 1 , t i ) ] } × ( z n + 1 2 , t i 1 2 ) ,
I ( k + 1 ) ( z n + 1 , t i ) = I ( k ) ( z n , t i ) + f ( k ) ( z n , t i ) Δ z + f ( k ) ( z n , t i ) Δ z 2 2 .
T = E out / E in ,
E out = 2 π d r d t I ( r , L , t ) ,
E in = 2 π d r d t I ( r , 0 , t ) ,

Metrics