Abstract

Page-oriented data storage systems incorporate optical detector arrays [such as complementary metal-oxide semiconductor (CMOS) arrays] in order to read data images. For laboratory demonstrations the detector array is typically pixel matched to the data image [Opt. Lett. 22, 1509 (1997)]. This approach requires exceedingly high-performance optics and mechanics for the simultaneous alignment of each data-bearing pixel image to a detector element to be achieved. Systems intended for commercialization are designed with detector arrays that spatially sample the image at or above the Nyquist rate in order to read poorly aligned and distorted images [S. Redfield, Holographic Data Storage (Springer-Verlag, 2000), pp. 347–349]. However, for data page sizes exceeding a megapixel this approach becomes prohibitive in terms of detector bandwidth, size, power, cost, and processing requirements. We have instead developed a sub-Nyquist oversampling methodology that can recover arbitrarily aligned and distorted megapixel data page images with pixel-matched fidelity by using fewer than double the number of detector pixels. Features required for practicable implementation are described, including fiducials for alignment determination.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, "Theory of optical information storage in solids," Appl. Opt. 2, 393-400 (1963).
    [CrossRef]
  2. K. Curtis, W. L. Wilson, and L. Dhar, "High density holographic storage," in Proceedings of the International Symposium on Optical Memory (ISOM, 2004).
  3. P. Yoon, E. Hwang, B. Kang, J. Park, and G. Park, "Image compensation for sub-pixel misalignment in holographic data storage," Proceedings of the International Symposium on Optical Memory (ISOM, 2004).
  4. G. W. Burr and T. Weiss, "Compensation for pixel misregistration in volume holographic data storage," Opt. Lett. 26, 542-544 (2001).
    [CrossRef]
  5. L. Menetrier and G. W. Burr, "Density implications of shift compensation postprocessing in holographic storage systems," Appl. Opt. 42, 845-860 (2003).
    [CrossRef] [PubMed]
  6. S. Redfield, "Tamarack optical head holographic storage," in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.Sincerbox, eds. (Springer-Verlag, 2000).
  7. G. W. Burr, "Holographic data storage with arbitrarily misaligned data pages," Opt. Lett. 27, 542-544 (2002).
    [CrossRef]
  8. V. Vadde and B. V. K. V. Kumar, "Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage," Appl. Opt. 38, 4374-4386 (1999).
    [CrossRef]
  9. K. Anderson and K. Curtis, "Polytopic multiplexing," Opt. Lett. 29, 1402-1404 (2004).
    [CrossRef] [PubMed]
  10. S. M. Kay, Fundamentals of Statistical Signal Processing:Estimation Theory (Prentice-Hall, 1993), Chap. 8.
  11. D. Calabro and J. K. Wolf, "On the synthesis of two-dimensional arrays with desirable correlation properties," Inf. Control 11, 537-560 (1968).
    [CrossRef]

2004

2003

2002

2001

1999

1968

D. Calabro and J. K. Wolf, "On the synthesis of two-dimensional arrays with desirable correlation properties," Inf. Control 11, 537-560 (1968).
[CrossRef]

1963

Anderson, K.

Burr, G. W.

Calabro, D.

D. Calabro and J. K. Wolf, "On the synthesis of two-dimensional arrays with desirable correlation properties," Inf. Control 11, 537-560 (1968).
[CrossRef]

Curtis, K.

K. Anderson and K. Curtis, "Polytopic multiplexing," Opt. Lett. 29, 1402-1404 (2004).
[CrossRef] [PubMed]

K. Curtis, W. L. Wilson, and L. Dhar, "High density holographic storage," in Proceedings of the International Symposium on Optical Memory (ISOM, 2004).

Dhar, L.

K. Curtis, W. L. Wilson, and L. Dhar, "High density holographic storage," in Proceedings of the International Symposium on Optical Memory (ISOM, 2004).

Hwang, E.

P. Yoon, E. Hwang, B. Kang, J. Park, and G. Park, "Image compensation for sub-pixel misalignment in holographic data storage," Proceedings of the International Symposium on Optical Memory (ISOM, 2004).

Kang, B.

P. Yoon, E. Hwang, B. Kang, J. Park, and G. Park, "Image compensation for sub-pixel misalignment in holographic data storage," Proceedings of the International Symposium on Optical Memory (ISOM, 2004).

Kay, S. M.

S. M. Kay, Fundamentals of Statistical Signal Processing:Estimation Theory (Prentice-Hall, 1993), Chap. 8.

Kumar, B. V. K. V.

Menetrier, L.

Park, G.

P. Yoon, E. Hwang, B. Kang, J. Park, and G. Park, "Image compensation for sub-pixel misalignment in holographic data storage," Proceedings of the International Symposium on Optical Memory (ISOM, 2004).

Park, J.

P. Yoon, E. Hwang, B. Kang, J. Park, and G. Park, "Image compensation for sub-pixel misalignment in holographic data storage," Proceedings of the International Symposium on Optical Memory (ISOM, 2004).

Redfield, S.

S. Redfield, "Tamarack optical head holographic storage," in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.Sincerbox, eds. (Springer-Verlag, 2000).

Vadde, V.

van Heerden, P. J.

Weiss, T.

Wilson, W. L.

K. Curtis, W. L. Wilson, and L. Dhar, "High density holographic storage," in Proceedings of the International Symposium on Optical Memory (ISOM, 2004).

Wolf, J. K.

D. Calabro and J. K. Wolf, "On the synthesis of two-dimensional arrays with desirable correlation properties," Inf. Control 11, 537-560 (1968).
[CrossRef]

Yoon, P.

P. Yoon, E. Hwang, B. Kang, J. Park, and G. Park, "Image compensation for sub-pixel misalignment in holographic data storage," Proceedings of the International Symposium on Optical Memory (ISOM, 2004).

Appl. Opt.

Inf. Control

D. Calabro and J. K. Wolf, "On the synthesis of two-dimensional arrays with desirable correlation properties," Inf. Control 11, 537-560 (1968).
[CrossRef]

Opt. Lett.

Other

K. Curtis, W. L. Wilson, and L. Dhar, "High density holographic storage," in Proceedings of the International Symposium on Optical Memory (ISOM, 2004).

P. Yoon, E. Hwang, B. Kang, J. Park, and G. Park, "Image compensation for sub-pixel misalignment in holographic data storage," Proceedings of the International Symposium on Optical Memory (ISOM, 2004).

S. Redfield, "Tamarack optical head holographic storage," in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.Sincerbox, eds. (Springer-Verlag, 2000).

S. M. Kay, Fundamentals of Statistical Signal Processing:Estimation Theory (Prentice-Hall, 1993), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simulated data pixel image neighborhood (real part of complex amplitude).

Fig. 2
Fig. 2

Simulated effects of oversampling on the SNR for various local alignments.

Fig. 3
Fig. 3

Simulated reserved block demodulation measurement error versus coherent noise power (normalized to 1 = on pixel).

Fig. 4
Fig. 4

Experimental data page reserved block displacement grid (arrow lengths, 64 times displacement).

Fig. 5
Fig. 5

Resampling sensitivity to alignment mismeasurement.

Fig. 6
Fig. 6

Experimental SNR for angularly multiplexed holograms recovered with both pixel-matched and oversampled detectors.

Fig. 7
Fig. 7

Experimental SNR versus diffraction efficiency.

Equations (64)

Equations on this page are rendered with MathJax. Learn more.

4 × 4
5 × 5
4 × 4
256 × 256
32 × 32
D p = 1.08 λ f Δ pix ,
Δ pix
4 × 4
δ X , δ Y
5 %
21 × 21 = 441
δ X , δ Y = 0 0.5
2 25
5 × 5   SLM   pixel
3 × 3
d ^ = Iw ,
d ^ d 2 = Σ i ( d ^ i d i ) 2
2048 × 16
d   and   d ^
w = ( I I T ) 1 I T d ,
Q μ 1 μ 0 σ 1 + σ 0
μ 1   and   μ 0
σ 1   and   σ 0
d ^
90 %
δ X = δ Y = 0.5
2
12   μm
9   μm
4 / 3
8 × 8   SLM   pixel
64   SLM   pixels
1.6 %
6 × 6   pixels
6 × 6
6 × 6
6 × 6
± 4
9 × 9
± 1.5
2 %
4 × 4
( δ X , δ Y )
5 %
5 %
4 / 3
532   nm
720 × 720 , 12   μm
92 %
0.95   mm
1.5   mm
19   mW
( 688 × 688   pixels )
( 0 .22   mm )
± 0.2   mm
± 0.4   mm
± 0.25 °
1200 720 × 720
3 × 5
4 %
1.0   mm
26.8 Gbits / in. 2
4 / 3
4 / 3

Metrics