Abstract

The influence of composition on the photorefractive effect in pure LiNbO3 crystals at low light intensity was investigated. The experimental results indicate that different defects dominate the photorefractive centers of pure LiNbO3 with various compositions. Bipolarons are considered to be responsible for the enhanced photovoltaic field in reduced near-stoichiometric LiNbO3, and their bulk photovoltaic constant κ is estimated to be 6.95×1032m 3/V. Q polarons (composed of two bipolarons) are introduced to explain the photorefractive effect of congruent LiNbO3 at both low and high light intensities.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Räuber, Chemistry and Physics of Lithium Niobate, Vol. 1 of Current Topics in Materials Science, E. Kaldis, ed. (North-Holland, 1978).
  2. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, 1989), Vols. 1 and 2.
  3. F. Jermann, M. Simon, and E. Krätzig, "Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities," J. Opt. Soc. Am. B 12, 2066-2070 (1995).
    [CrossRef]
  4. K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997).
    [CrossRef]
  5. X. Chen, B. Li, J. Xu, D. Zhu, S. Pan, and Zh. Wu, "Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melts containing K2O," J. Appl. Phys. 90, 1516-1520 (2001).
    [CrossRef]
  6. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
    [CrossRef]
  7. Y. S. Bai and R. Kachru, "Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers," Phys. Rev. Lett. 78, 2944-2947 (1997).
    [CrossRef]
  8. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
    [CrossRef] [PubMed]
  9. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, "Two-color holography in reduced near-stoichiometric lithium niobate," Appl. Opt. 37, 7611-7623 (1998).
    [CrossRef]
  10. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, "Nonvolatile two-color holographic recording in Tb-doped LiNbO3," Appl. Phys. Lett. 76, 1653-1655 (2000).
    [CrossRef]
  11. D. L. Staebler and J. J. Amodei, "Coupled-wave analysis of holographic storage in LiNbO3," J. Appl. Phys. 43, 1042-1049 (1972).
    [CrossRef]
  12. R. L. Holman, in Processing of Crystalline Ceramics (Plenum, 1978), p. 343.
  13. M. Wöhlecke, G. Corradi, and K. Betzler, "Optical methods to characterize the composition and homogeneity of lithium niobate single crystals," Appl. Phys. B 63, 323-330 (1996).
    [CrossRef]
  14. I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, and S. A. Migachev, "Electronic structure of deep centers in LiNbO3," Phys. Solid State 40, 1012-1018 (1998).
    [CrossRef]
  15. O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. Experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
    [CrossRef]
  16. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
    [CrossRef]
  17. Y. P. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, "Photorefractive properties of lithium niobate crystals doped with manganese," J. Opt. Soc. Am. B 20, 1491-1502 (2003).
    [CrossRef]
  18. F. Jermann and J. Otten, "Light-induced charge transport in LiNbO3:Fe at high light intensities," J. Opt. Soc. Am. B 10, 2085-2092 (1993).
    [CrossRef]
  19. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, "Lifetime of small polarons in iron-doped lithium-niobate crystals," J. Appl. Phys. 87, 1034-1041 (2000).
    [CrossRef]
  20. S. M. Kostritskii and O. G. Sevostyanov, "Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals," Appl. Phys. B 65, 527-533 (1997).
    [CrossRef]

2003

2001

X. Chen, B. Li, J. Xu, D. Zhu, S. Pan, and Zh. Wu, "Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melts containing K2O," J. Appl. Phys. 90, 1516-1520 (2001).
[CrossRef]

2000

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, "Nonvolatile two-color holographic recording in Tb-doped LiNbO3," Appl. Phys. Lett. 76, 1653-1655 (2000).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, "Lifetime of small polarons in iron-doped lithium-niobate crystals," J. Appl. Phys. 87, 1034-1041 (2000).
[CrossRef]

1998

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, "Two-color holography in reduced near-stoichiometric lithium niobate," Appl. Opt. 37, 7611-7623 (1998).
[CrossRef]

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, and S. A. Migachev, "Electronic structure of deep centers in LiNbO3," Phys. Solid State 40, 1012-1018 (1998).
[CrossRef]

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
[CrossRef] [PubMed]

1997

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997).
[CrossRef]

Y. S. Bai and R. Kachru, "Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers," Phys. Rev. Lett. 78, 2944-2947 (1997).
[CrossRef]

S. M. Kostritskii and O. G. Sevostyanov, "Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals," Appl. Phys. B 65, 527-533 (1997).
[CrossRef]

1996

M. Wöhlecke, G. Corradi, and K. Betzler, "Optical methods to characterize the composition and homogeneity of lithium niobate single crystals," Appl. Phys. B 63, 323-330 (1996).
[CrossRef]

1995

1993

1991

O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. Experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

1979

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

1972

D. L. Staebler and J. J. Amodei, "Coupled-wave analysis of holographic storage in LiNbO3," J. Appl. Phys. 43, 1042-1049 (1972).
[CrossRef]

Akella, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
[CrossRef] [PubMed]

Akhmadullin, I. Sh.

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, and S. A. Migachev, "Electronic structure of deep centers in LiNbO3," Phys. Solid State 40, 1012-1018 (1998).
[CrossRef]

Amodei, J. J.

D. L. Staebler and J. J. Amodei, "Coupled-wave analysis of holographic storage in LiNbO3," J. Appl. Phys. 43, 1042-1049 (1972).
[CrossRef]

Bai, Y. S.

Y. S. Bai and R. Kachru, "Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers," Phys. Rev. Lett. 78, 2944-2947 (1997).
[CrossRef]

Berben, D.

Y. P. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, "Photorefractive properties of lithium niobate crystals doped with manganese," J. Opt. Soc. Am. B 20, 1491-1502 (2003).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, "Lifetime of small polarons in iron-doped lithium-niobate crystals," J. Appl. Phys. 87, 1034-1041 (2000).
[CrossRef]

Betzler, K.

M. Wöhlecke, G. Corradi, and K. Betzler, "Optical methods to characterize the composition and homogeneity of lithium niobate single crystals," Appl. Phys. B 63, 323-330 (1996).
[CrossRef]

Buse, K.

Y. P. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, "Photorefractive properties of lithium niobate crystals doped with manganese," J. Opt. Soc. Am. B 20, 1491-1502 (2003).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, "Lifetime of small polarons in iron-doped lithium-niobate crystals," J. Appl. Phys. 87, 1034-1041 (2000).
[CrossRef]

Chen, X.

X. Chen, B. Li, J. Xu, D. Zhu, S. Pan, and Zh. Wu, "Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melts containing K2O," J. Appl. Phys. 90, 1516-1520 (2001).
[CrossRef]

Corradi, G.

M. Wöhlecke, G. Corradi, and K. Betzler, "Optical methods to characterize the composition and homogeneity of lithium niobate single crystals," Appl. Phys. B 63, 323-330 (1996).
[CrossRef]

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, "Nonvolatile two-color holographic recording in Tb-doped LiNbO3," Appl. Phys. Lett. 76, 1653-1655 (2000).
[CrossRef]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, "Two-color holography in reduced near-stoichiometric lithium niobate," Appl. Opt. 37, 7611-7623 (1998).
[CrossRef]

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997).
[CrossRef]

Golenishchev-Kutuzov, V. A.

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, and S. A. Migachev, "Electronic structure of deep centers in LiNbO3," Phys. Solid State 40, 1012-1018 (1998).
[CrossRef]

Guenther, H.

Günter, P.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997).
[CrossRef]

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, 1989), Vols. 1 and 2.

Hartwig, U.

Hatano, H.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, "Nonvolatile two-color holographic recording in Tb-doped LiNbO3," Appl. Phys. Lett. 76, 1653-1655 (2000).
[CrossRef]

Herth, P.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, "Lifetime of small polarons in iron-doped lithium-niobate crystals," J. Appl. Phys. 87, 1034-1041 (2000).
[CrossRef]

Hesselink, L.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
[CrossRef] [PubMed]

Holman, R. L.

R. L. Holman, in Processing of Crystalline Ceramics (Plenum, 1978), p. 343.

Huignard, J. P.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, 1989), Vols. 1 and 2.

Imlau, M.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, "Lifetime of small polarons in iron-doped lithium-niobate crystals," J. Appl. Phys. 87, 1034-1041 (2000).
[CrossRef]

Jermann, F.

Ji, Y.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997).
[CrossRef]

Kachru, R.

Y. S. Bai and R. Kachru, "Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers," Phys. Rev. Lett. 78, 2944-2947 (1997).
[CrossRef]

Kitamura, K.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, "Nonvolatile two-color holographic recording in Tb-doped LiNbO3," Appl. Phys. Lett. 76, 1653-1655 (2000).
[CrossRef]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, "Two-color holography in reduced near-stoichiometric lithium niobate," Appl. Opt. 37, 7611-7623 (1998).
[CrossRef]

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii and O. G. Sevostyanov, "Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals," Appl. Phys. B 65, 527-533 (1997).
[CrossRef]

Krätzig, E.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Lande, D.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
[CrossRef] [PubMed]

Lee, M.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, "Nonvolatile two-color holographic recording in Tb-doped LiNbO3," Appl. Phys. Lett. 76, 1653-1655 (2000).
[CrossRef]

Li, B.

X. Chen, B. Li, J. Xu, D. Zhu, S. Pan, and Zh. Wu, "Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melts containing K2O," J. Appl. Phys. 90, 1516-1520 (2001).
[CrossRef]

Liu, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
[CrossRef] [PubMed]

Luennemann, M.

Macfarlane, R.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Medrano, C.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997).
[CrossRef]

Migachev, S. A.

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, and S. A. Migachev, "Electronic structure of deep centers in LiNbO3," Phys. Solid State 40, 1012-1018 (1998).
[CrossRef]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Montemezzani, G.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997).
[CrossRef]

Neurgaonkar, R.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
[CrossRef] [PubMed]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, "Two-color holography in reduced near-stoichiometric lithium niobate," Appl. Opt. 37, 7611-7623 (1998).
[CrossRef]

Odoulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Orlov, S.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
[CrossRef] [PubMed]

Otten, J.

Pan, S.

X. Chen, B. Li, J. Xu, D. Zhu, S. Pan, and Zh. Wu, "Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melts containing K2O," J. Appl. Phys. 90, 1516-1520 (2001).
[CrossRef]

Psaltis, D.

Räuber, A.

A. Räuber, Chemistry and Physics of Lithium Niobate, Vol. 1 of Current Topics in Materials Science, E. Kaldis, ed. (North-Holland, 1978).

Schirmer, O.

O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. Experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

Sevostyanov, O. G.

S. M. Kostritskii and O. G. Sevostyanov, "Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals," Appl. Phys. B 65, 527-533 (1997).
[CrossRef]

Simon, M.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Staebler, D. L.

D. L. Staebler and J. J. Amodei, "Coupled-wave analysis of holographic storage in LiNbO3," J. Appl. Phys. 43, 1042-1049 (1972).
[CrossRef]

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, "Nonvolatile two-color holographic recording in Tb-doped LiNbO3," Appl. Phys. Lett. 76, 1653-1655 (2000).
[CrossRef]

Tanaka, S.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, "Nonvolatile two-color holographic recording in Tb-doped LiNbO3," Appl. Phys. Lett. 76, 1653-1655 (2000).
[CrossRef]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Thiemann, O.

O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. Experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Wevering, S.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, "Lifetime of small polarons in iron-doped lithium-niobate crystals," J. Appl. Phys. 87, 1034-1041 (2000).
[CrossRef]

Wöehlecke, M.

O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. Experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

Wöhlecke, M.

M. Wöhlecke, G. Corradi, and K. Betzler, "Optical methods to characterize the composition and homogeneity of lithium niobate single crystals," Appl. Phys. B 63, 323-330 (1996).
[CrossRef]

Woike, Th.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, "Lifetime of small polarons in iron-doped lithium-niobate crystals," J. Appl. Phys. 87, 1034-1041 (2000).
[CrossRef]

Wu, Zh.

X. Chen, B. Li, J. Xu, D. Zhu, S. Pan, and Zh. Wu, "Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melts containing K2O," J. Appl. Phys. 90, 1516-1520 (2001).
[CrossRef]

Xu, J.

X. Chen, B. Li, J. Xu, D. Zhu, S. Pan, and Zh. Wu, "Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melts containing K2O," J. Appl. Phys. 90, 1516-1520 (2001).
[CrossRef]

Yang, Y. P.

Zgonik, M.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997).
[CrossRef]

Zhu, D.

X. Chen, B. Li, J. Xu, D. Zhu, S. Pan, and Zh. Wu, "Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melts containing K2O," J. Appl. Phys. 90, 1516-1520 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. M. Kostritskii and O. G. Sevostyanov, "Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals," Appl. Phys. B 65, 527-533 (1997).
[CrossRef]

M. Wöhlecke, G. Corradi, and K. Betzler, "Optical methods to characterize the composition and homogeneity of lithium niobate single crystals," Appl. Phys. B 63, 323-330 (1996).
[CrossRef]

Appl. Phys. Lett.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, "Nonvolatile two-color holographic recording in Tb-doped LiNbO3," Appl. Phys. Lett. 76, 1653-1655 (2000).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, "Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations," Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

J. Appl. Phys.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997).
[CrossRef]

X. Chen, B. Li, J. Xu, D. Zhu, S. Pan, and Zh. Wu, "Photorefractive properties of near-stoichiometric LiNbO3 grown from congruent melts containing K2O," J. Appl. Phys. 90, 1516-1520 (2001).
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and Th. Woike, "Lifetime of small polarons in iron-doped lithium-niobate crystals," J. Appl. Phys. 87, 1034-1041 (2000).
[CrossRef]

D. L. Staebler and J. J. Amodei, "Coupled-wave analysis of holographic storage in LiNbO3," J. Appl. Phys. 43, 1042-1049 (1972).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

O. Schirmer, O. Thiemann, and M. Wöehlecke, "Defects in LiNbO3. I. Experimental aspects," J. Phys. Chem. Solids 52, 185-200 (1991).
[CrossRef]

Phys. Rev. Lett.

Y. S. Bai and R. Kachru, "Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers," Phys. Rev. Lett. 78, 2944-2947 (1997).
[CrossRef]

Phys. Solid State

I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, and S. A. Migachev, "Electronic structure of deep centers in LiNbO3," Phys. Solid State 40, 1012-1018 (1998).
[CrossRef]

Science

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, "Photorefractive materials for nonvolatile volume holographic data storage," Science 282, 1089-1094 (1998).
[CrossRef] [PubMed]

Other

A. Räuber, Chemistry and Physics of Lithium Niobate, Vol. 1 of Current Topics in Materials Science, E. Kaldis, ed. (North-Holland, 1978).

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, 1989), Vols. 1 and 2.

R. L. Holman, in Processing of Crystalline Ceramics (Plenum, 1978), p. 343.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental schematic for holographic recording and erasure.

Fig. 2
Fig. 2

Transmittance spectra of samples S1 and S6. Inset, the change in transmittance that is due to reduced treatment for both samples.

Fig. 3
Fig. 3

Dependence of E sc on grating period and composition of the sample.

Fig. 4
Fig. 4

Fitting curves for samples S1, S2, S4, S6, and S7.

Fig. 5
Fig. 5

Dependence of κ and N on the composition of the sample.

Fig. 6
Fig. 6

Dependence of E ph and σph on the composition of the sample.

Tables (2)

Tables Icon

Table 1 Measured and Fitting Parameters of the Samples in Our Study a

Tables Icon

Table 2 Constants Used during Fitting of the Experimental Results

Equations (88)

Equations on this page are rendered with MathJax. Learn more.

6.95 × 10 32 m 3 / V
[ Li ] / [ Nb ]
1.2 × 10 5 V / cm
( N b Li         4 + )
( N b Li         4 + N b Nb           4 + )
48.38   mol .   %   Li 2 O
51.62   mol . %   Nb 2 O 5 )
{ [ Li ] / ( [ Nb ] + [ Li ] ) }
49.5   mol .   % LiNbO 3   SLN
700 ° C
6   h
( I S = I R = 1.0 × 10 4 W / m 2 )
532   nm
1596   nm
3.5   eV
3.5   eV
3 .9   eV
2.5   eV
η = η 0 exp ( 2 t / τ e ) ,
η 0
τ e
η 0
E sc
η 0 = sin 2 ( π d Δ n λ cos θ ) ,
Δ n = ½ n 3 r eff E sc ,
n = n c n o ( n e     2 sin 2 θ + n o     2 cos 2 θ ) 1 / 2 ,
r eff = r 33 cos 2 θ r 13 sin 2 θ + n e n o n e ( r 33 + r 13 ) sin 2 ( 2 θ ) ,
Δ n
r eff
σ d
σ ph
σ ph = ε ε 0 / τ e ,
ε   and   ε 0
E sc
E sc
E sc
E sc = E q { E d     2 + E ph         2 ( E d + E q ) 2 + [ E ph ( N A / N D ) ] 2 } 1 / 2 ,
N D   and   N A
E q
E d
E ph
E q = q Λ N A N 2 π ε ε 0 N D ,
E d = k B T q K ,
E ph = κ N 1 I 0 σ ph ,
q , k B , T ,
N
σ ph
N = N D N A ,
K = 4 π n sin θ λ ,
σ ph = I 0 I R σ ph ,
I 0
I S   and   I R
N
N D
E sc
κ , N
N D
N
κ = i κ i x i ( i = 1 , 2 , 3 ) ,
i x i = 1 ,
κ i
x i
6.95 × 10 32 m 3 / V
49.90   mol .   %   Li 2 O
6.95 × 10 32 m 3 / V.
2.12 × 10 32 m 3 / V
2.5   eV
LiNbO 3
LiNbO 3
LiNbO 3
49.90   mol .   %
3.5   eV
SLN is   10 21 m - 3
N D
E q         E ph
E sc E q Λ
E ph   and   σ ph
E ph κ / σ ph
49.90   mol .   %
E ph
σ ph
σ ph
E ph
LiNbO 3
Li 2 O
48.32   to   49.95   mol .   %
LiNbO 3
6 .95 × 10 32 m 3 / V

Metrics