Abstract

A multitap negative and positive coefficient radio-frequency transversal filter is implemented by using a digital-micromirror-device spatial light modulator for weighting-factor control and a chirped fiber Bragg grating for time-delay control. The demonstrated architecture is reconfigurable, has high speed and low loss, and is robust through digital programmability for a wide variety of filtering algorithms. A design using an interleaver for differential detection realizes an ultrahigh bandwidth with a maximum processable frequency of 33.7  GHz. A multitap low-pass filter, a negative tap notch filter with 40  dB attenuation, and a multitap negative coefficient bandpass filter are experimentally demonstrated. The results are in agreement with theory.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wilner and A. P. Van Den Heuvel, "Fiber-optic delay lines for microwave signal processing," Proc. IEEE 64, 805-807 (1976).
    [CrossRef]
  2. N. A. Riza, "Optical transversal filter," U.S. patent 5,329,118 (12 July 1994).
  3. B. Moslehi, K. K. Chau, and J. W. Goodman, "Optical amplifiers and liquid-crystal shutters applied to an electrically reconfigurable fiber optic signal processor," Opt . Eng. 32, 574-581 (1993).
  4. D. Dolfi, J. Tabourel, O. Durand, V. Laude, and J. Huignard, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1471 (1997).
    [CrossRef]
  5. S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
    [CrossRef]
  6. J. Capmany, J. Cascón, J. L. Martin, S. Sales, D. Pastor, and J. Marti, "Synthesis of fiber-optic delay line filters," J. Lightwave Technol. 13, 2003-2012 (1995).
    [CrossRef]
  7. B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with negative coefficients based on WDM techniques," IEEE Photon. Technol. Lett. 16, 2123-2125 (2004).
    [CrossRef]
  8. F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical incoherent negative taps for photonic signal processing," Electron. Lett. 33, 973-975 (1997).
    [CrossRef]
  9. F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical rf filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microwave Theory Tech. 45, 1473-1477 (1997).
    [CrossRef]
  10. S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
    [CrossRef]
  11. X. Wang, L. Y. Chan, and K. T. Chan, "All-optical incoherent negative tap fiber-optic delay lines using an injection-locked F-P laser diode," in Proceedings of the 1998 11th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 1998), pp. 229-230.
  12. J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filter with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
    [CrossRef] [PubMed]
  13. S. Mansoori, A. Mitchell, and K. Ghorbani, "Photonic reconfigurable microwave filter with negative coefficients," Electron. Lett. 40, 541-543 (2004).
    [CrossRef]
  14. N. You and R. Minasian, "All-optical photonic signal processors with negative coefficients," J. Lightwave Technol. 22, 2739-2742 (2004).
    [CrossRef]
  15. D. B. Hunter, "Incoherent bipolar tap microwave photonic fiber based on a balanced bridge electro-optic modulator," Electron. Lett. 40, 856-857 (2004).
    [CrossRef]
  16. B. Vidal, J. L. Corral, and J. Marti, "All-optical WDM microwave filter with negative coefficient," IEEE Photon. Technol. Lett. 17, 666-668 (2005).
    [CrossRef]
  17. D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, "Reconfigurable rf photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 16, 2126-2128 (2004).
    [CrossRef]
  18. N. A. Riza and M. A. Arain, "Programmable broadband radio-frequency transversal filter using compact fiber optics and digital MEMS-based optical spectral control," Appl. Opt. 43, 3159-3165 (2004).
    [CrossRef] [PubMed]
  19. N. A. Riza, M. A. Arain, and F. N. Ghauri, "Tunable microwave/millimeter wave transversal filter using retro-reflective spatial photonics," in Digest of International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 36-39.
  20. A. Ambardar, Analog and Digital Signal Processing, 2nd ed. (Brooks-Cole, 1999).
  21. N. A. Riza and M. J. Mughal, "Broadband optical equalizer using fault tolerant digital micromirrors," Opt. Express 11, 1559-1565 (2003).
    [CrossRef] [PubMed]
  22. N.A. Riza, M. A. Arain, and S. A. Khan, "Variable fiber-optic delay line," J. Lightwave Technol. 22, 619-624 (2004).
    [CrossRef]

2005 (1)

B. Vidal, J. L. Corral, and J. Marti, "All-optical WDM microwave filter with negative coefficient," IEEE Photon. Technol. Lett. 17, 666-668 (2005).
[CrossRef]

2004 (7)

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, "Reconfigurable rf photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 16, 2126-2128 (2004).
[CrossRef]

N. A. Riza and M. A. Arain, "Programmable broadband radio-frequency transversal filter using compact fiber optics and digital MEMS-based optical spectral control," Appl. Opt. 43, 3159-3165 (2004).
[CrossRef] [PubMed]

S. Mansoori, A. Mitchell, and K. Ghorbani, "Photonic reconfigurable microwave filter with negative coefficients," Electron. Lett. 40, 541-543 (2004).
[CrossRef]

N. You and R. Minasian, "All-optical photonic signal processors with negative coefficients," J. Lightwave Technol. 22, 2739-2742 (2004).
[CrossRef]

D. B. Hunter, "Incoherent bipolar tap microwave photonic fiber based on a balanced bridge electro-optic modulator," Electron. Lett. 40, 856-857 (2004).
[CrossRef]

N.A. Riza, M. A. Arain, and S. A. Khan, "Variable fiber-optic delay line," J. Lightwave Technol. 22, 619-624 (2004).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with negative coefficients based on WDM techniques," IEEE Photon. Technol. Lett. 16, 2123-2125 (2004).
[CrossRef]

2003 (2)

2000 (1)

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

1997 (3)

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical incoherent negative taps for photonic signal processing," Electron. Lett. 33, 973-975 (1997).
[CrossRef]

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical rf filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microwave Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

D. Dolfi, J. Tabourel, O. Durand, V. Laude, and J. Huignard, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1471 (1997).
[CrossRef]

1995 (2)

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

J. Capmany, J. Cascón, J. L. Martin, S. Sales, D. Pastor, and J. Marti, "Synthesis of fiber-optic delay line filters," J. Lightwave Technol. 13, 2003-2012 (1995).
[CrossRef]

1993 (1)

B. Moslehi, K. K. Chau, and J. W. Goodman, "Optical amplifiers and liquid-crystal shutters applied to an electrically reconfigurable fiber optic signal processor," Opt . Eng. 32, 574-581 (1993).

1976 (1)

K. Wilner and A. P. Van Den Heuvel, "Fiber-optic delay lines for microwave signal processing," Proc. IEEE 64, 805-807 (1976).
[CrossRef]

Ambardar, A.

A. Ambardar, Analog and Digital Signal Processing, 2nd ed. (Brooks-Cole, 1999).

Arain, M. A.

N. A. Riza and M. A. Arain, "Programmable broadband radio-frequency transversal filter using compact fiber optics and digital MEMS-based optical spectral control," Appl. Opt. 43, 3159-3165 (2004).
[CrossRef] [PubMed]

N.A. Riza, M. A. Arain, and S. A. Khan, "Variable fiber-optic delay line," J. Lightwave Technol. 22, 619-624 (2004).
[CrossRef]

N. A. Riza, M. A. Arain, and F. N. Ghauri, "Tunable microwave/millimeter wave transversal filter using retro-reflective spatial photonics," in Digest of International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 36-39.

Bennion, I.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Capmany, J.

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, "Reconfigurable rf photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 16, 2126-2128 (2004).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filter with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
[CrossRef] [PubMed]

J. Capmany, J. Cascón, J. L. Martin, S. Sales, D. Pastor, and J. Marti, "Synthesis of fiber-optic delay line filters," J. Lightwave Technol. 13, 2003-2012 (1995).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

Cascón, J.

J. Capmany, J. Cascón, J. L. Martin, S. Sales, D. Pastor, and J. Marti, "Synthesis of fiber-optic delay line filters," J. Lightwave Technol. 13, 2003-2012 (1995).
[CrossRef]

Chan, K. T.

X. Wang, L. Y. Chan, and K. T. Chan, "All-optical incoherent negative tap fiber-optic delay lines using an injection-locked F-P laser diode," in Proceedings of the 1998 11th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 1998), pp. 229-230.

Chan, L. Y.

X. Wang, L. Y. Chan, and K. T. Chan, "All-optical incoherent negative tap fiber-optic delay lines using an injection-locked F-P laser diode," in Proceedings of the 1998 11th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 1998), pp. 229-230.

Chau, K. K.

B. Moslehi, K. K. Chau, and J. W. Goodman, "Optical amplifiers and liquid-crystal shutters applied to an electrically reconfigurable fiber optic signal processor," Opt . Eng. 32, 574-581 (1993).

Chiang, K. S.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Coppinger, F.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical incoherent negative taps for photonic signal processing," Electron. Lett. 33, 973-975 (1997).
[CrossRef]

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical rf filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microwave Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

Corral, J. L.

B. Vidal, J. L. Corral, and J. Marti, "All-optical WDM microwave filter with negative coefficient," IEEE Photon. Technol. Lett. 17, 666-668 (2005).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with negative coefficients based on WDM techniques," IEEE Photon. Technol. Lett. 16, 2123-2125 (2004).
[CrossRef]

Dolfi, D.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, and J. Huignard, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1471 (1997).
[CrossRef]

Durand, O.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, and J. Huignard, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1471 (1997).
[CrossRef]

Gambling, W. A.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Ghauri, F. N.

N. A. Riza, M. A. Arain, and F. N. Ghauri, "Tunable microwave/millimeter wave transversal filter using retro-reflective spatial photonics," in Digest of International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 36-39.

Ghorbani, K.

S. Mansoori, A. Mitchell, and K. Ghorbani, "Photonic reconfigurable microwave filter with negative coefficients," Electron. Lett. 40, 541-543 (2004).
[CrossRef]

Goodman, J. W.

B. Moslehi, K. K. Chau, and J. W. Goodman, "Optical amplifiers and liquid-crystal shutters applied to an electrically reconfigurable fiber optic signal processor," Opt . Eng. 32, 574-581 (1993).

Huignard, J.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, and J. Huignard, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1471 (1997).
[CrossRef]

Hunter, D. B.

D. B. Hunter, "Incoherent bipolar tap microwave photonic fiber based on a balanced bridge electro-optic modulator," Electron. Lett. 40, 856-857 (2004).
[CrossRef]

Jalali, B.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical rf filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microwave Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical incoherent negative taps for photonic signal processing," Electron. Lett. 33, 973-975 (1997).
[CrossRef]

Khan, S. A.

Laude, V.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, and J. Huignard, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1471 (1997).
[CrossRef]

Li, S.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Liu, Y.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Mansoori, S.

S. Mansoori, A. Mitchell, and K. Ghorbani, "Photonic reconfigurable microwave filter with negative coefficients," Electron. Lett. 40, 541-543 (2004).
[CrossRef]

Marti, J.

B. Vidal, J. L. Corral, and J. Marti, "All-optical WDM microwave filter with negative coefficient," IEEE Photon. Technol. Lett. 17, 666-668 (2005).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with negative coefficients based on WDM techniques," IEEE Photon. Technol. Lett. 16, 2123-2125 (2004).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

J. Capmany, J. Cascón, J. L. Martin, S. Sales, D. Pastor, and J. Marti, "Synthesis of fiber-optic delay line filters," J. Lightwave Technol. 13, 2003-2012 (1995).
[CrossRef]

Martin, J. L.

J. Capmany, J. Cascón, J. L. Martin, S. Sales, D. Pastor, and J. Marti, "Synthesis of fiber-optic delay line filters," J. Lightwave Technol. 13, 2003-2012 (1995).
[CrossRef]

Martinez, A.

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, "Reconfigurable rf photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 16, 2126-2128 (2004).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filter with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
[CrossRef] [PubMed]

Minasian, R.

Mitchell, A.

S. Mansoori, A. Mitchell, and K. Ghorbani, "Photonic reconfigurable microwave filter with negative coefficients," Electron. Lett. 40, 541-543 (2004).
[CrossRef]

Moslehi, B.

B. Moslehi, K. K. Chau, and J. W. Goodman, "Optical amplifiers and liquid-crystal shutters applied to an electrically reconfigurable fiber optic signal processor," Opt . Eng. 32, 574-581 (1993).

Mughal, M. J.

Ortega, B.

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, "Reconfigurable rf photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 16, 2126-2128 (2004).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filter with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
[CrossRef] [PubMed]

Pastor, D.

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, "Reconfigurable rf photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 16, 2126-2128 (2004).
[CrossRef]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filter with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
[CrossRef] [PubMed]

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

J. Capmany, J. Cascón, J. L. Martin, S. Sales, D. Pastor, and J. Marti, "Synthesis of fiber-optic delay line filters," J. Lightwave Technol. 13, 2003-2012 (1995).
[CrossRef]

Pierno, L.

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, "Reconfigurable rf photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 16, 2126-2128 (2004).
[CrossRef]

Polo, V.

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with negative coefficients based on WDM techniques," IEEE Photon. Technol. Lett. 16, 2123-2125 (2004).
[CrossRef]

Riza, N. A.

Sales, S.

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filter with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett. 28, 1415-1417 (2003).
[CrossRef] [PubMed]

J. Capmany, J. Cascón, J. L. Martin, S. Sales, D. Pastor, and J. Marti, "Synthesis of fiber-optic delay line filters," J. Lightwave Technol. 13, 2003-2012 (1995).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

Tabourel, J.

D. Dolfi, J. Tabourel, O. Durand, V. Laude, and J. Huignard, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1471 (1997).
[CrossRef]

Trinh, P. D.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical incoherent negative taps for photonic signal processing," Electron. Lett. 33, 973-975 (1997).
[CrossRef]

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical rf filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microwave Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

Van Den Heuvel, A. P.

K. Wilner and A. P. Van Den Heuvel, "Fiber-optic delay lines for microwave signal processing," Proc. IEEE 64, 805-807 (1976).
[CrossRef]

Varasi, M.

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, "Reconfigurable rf photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 16, 2126-2128 (2004).
[CrossRef]

Vidal, B.

B. Vidal, J. L. Corral, and J. Marti, "All-optical WDM microwave filter with negative coefficient," IEEE Photon. Technol. Lett. 17, 666-668 (2005).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with negative coefficients based on WDM techniques," IEEE Photon. Technol. Lett. 16, 2123-2125 (2004).
[CrossRef]

Wang, X.

X. Wang, L. Y. Chan, and K. T. Chan, "All-optical incoherent negative tap fiber-optic delay lines using an injection-locked F-P laser diode," in Proceedings of the 1998 11th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 1998), pp. 229-230.

Wilner, K.

K. Wilner and A. P. Van Den Heuvel, "Fiber-optic delay lines for microwave signal processing," Proc. IEEE 64, 805-807 (1976).
[CrossRef]

Yegnanarayanan, S.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical incoherent negative taps for photonic signal processing," Electron. Lett. 33, 973-975 (1997).
[CrossRef]

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical rf filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microwave Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

You, N.

Zhang, L.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (4)

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical incoherent negative taps for photonic signal processing," Electron. Lett. 33, 973-975 (1997).
[CrossRef]

S. Mansoori, A. Mitchell, and K. Ghorbani, "Photonic reconfigurable microwave filter with negative coefficients," Electron. Lett. 40, 541-543 (2004).
[CrossRef]

D. B. Hunter, "Incoherent bipolar tap microwave photonic fiber based on a balanced bridge electro-optic modulator," Electron. Lett. 40, 856-857 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

B. Vidal, J. L. Corral, and J. Marti, "All-optical WDM microwave filter with negative coefficient," IEEE Photon. Technol. Lett. 17, 666-668 (2005).
[CrossRef]

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, "Reconfigurable rf photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 16, 2126-2128 (2004).
[CrossRef]

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 1207-1209 (2000).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with negative coefficients based on WDM techniques," IEEE Photon. Technol. Lett. 16, 2123-2125 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical rf filter using amplitude inversion in a semiconductor optical amplifier," IEEE Trans. Microwave Theory Tech. 45, 1473-1477 (1997).
[CrossRef]

D. Dolfi, J. Tabourel, O. Durand, V. Laude, and J. Huignard, "Optical architecture for programmable filtering and correlation of microwave signals," IEEE Trans. Microwave Theory Tech. 45, 1467-1471 (1997).
[CrossRef]

J. Lightwave Technol. (3)

Opt (1)

B. Moslehi, K. K. Chau, and J. W. Goodman, "Optical amplifiers and liquid-crystal shutters applied to an electrically reconfigurable fiber optic signal processor," Opt . Eng. 32, 574-581 (1993).

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

K. Wilner and A. P. Van Den Heuvel, "Fiber-optic delay lines for microwave signal processing," Proc. IEEE 64, 805-807 (1976).
[CrossRef]

Other (4)

N. A. Riza, "Optical transversal filter," U.S. patent 5,329,118 (12 July 1994).

X. Wang, L. Y. Chan, and K. T. Chan, "All-optical incoherent negative tap fiber-optic delay lines using an injection-locked F-P laser diode," in Proceedings of the 1998 11th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, 1998), pp. 229-230.

N. A. Riza, M. A. Arain, and F. N. Ghauri, "Tunable microwave/millimeter wave transversal filter using retro-reflective spatial photonics," in Digest of International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 36-39.

A. Ambardar, Analog and Digital Signal Processing, 2nd ed. (Brooks-Cole, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Theoretical plot of the magnitude and phase of the frequency response of a high-pass discrete filter with a cutoff frequency of 0.5 rad∕sample when a varying number of taps are used.

Fig. 2
Fig. 2

Proposed programmable broadband RF transversal filter using compact fiber optics and a SLM: M, high-speed optical intensity modulator; BOS, broadband optical source; τ d , fixed path optical delay between odd and even wavelengths of the interleaver; I, interleaver; E, equalizer optics; C1, C2, optical circulators; G, grating; C, cylindrical lens; θ c , grating Bragg angle; F, focal length of C; SMF, single-mode fiber.

Fig. 3
Fig. 3

Postprocessor optoelectronic designs for implementing negative and positive weights using (a) a differential amplifier, DA; (b) an interconnected dual-photodetector scheme; (c) a variable length RF delay cable for baseband operation. PD1, PD2, high-speed photodiodes; A, RF amplifier.

Fig. 4
Fig. 4

Optical spectrum of the DMD-implemented seven-tap discrete RF low-pass filter showing the strength of the seven-tap coefficients. The intertap wavelength gap, Δλ = 1.81 nm, corresponds to a 66.97 ps tap delay step.

Fig. 5
Fig. 5

Frequency-domain response H(f) of the demonstrated seven-tap low-pass filter: solid curve, theoretical frequency response of the RF filter; dotted curve, measured frequency response measured by a RF vector network analyzer.

Fig. 6
Fig. 6

Optical spectrum of the DMD implemented two-tap notch filter. The two equal power optical beams centered at 1540.56 and 1546.52 nm come from the two arms of the interleaver.

Fig. 7
Fig. 7

Frequency-domain response H(f) of the two-tap notch filter: solid curve, theoretical frequency response of the RF filter of the two-tap positive ([1 1]) filter with the notch at 2.25 GHz while the corresponding measured frequency response is shown by circular data markers; dotted curve, theoretical frequency response of the RF filter of the two-tap negative [1 −1] filter response with the notch frequency at 4.5 GHz. The corresponding measured frequency response through a RF spectrum analyzer is shown by triangular data markers.

Fig. 8
Fig. 8

Optical spectrum of the DMD-implemented 13-tap bandpass filter. The central wavelengths, 1536.61, 1540.56, 1544.53, 1548.51, 1552.52, 1556.55, and 1560.61, come from one arm while 1538.58, 1542.54, 1546.52, 1550.52, 1554.54, and 1558.58 nm come from the other arm of the interleaver. Shown are seven weights, A 0, A 2, A 4, A 6, A 8, A 10, and A 12, because the other weights, A 1, A 3, A 5, A 7, A 9, and A 11, are zero.

Fig. 9
Fig. 9

Frequency-domain response H(f) of the 13-tap filter implemented in Fig. 8: solid curve, theoretical frequency response of the RF filter with all-positive taps with the corresponding measured response shown by circular data markers; dotted curve, theoretical response of the filter with positive as well as negative weights with the corresponding measured response through a RF spectrum analyzer shown by triangular data markers.

Fig. 10
Fig. 10

Snapshot of 26 of the 65 wavelength-specific filter taps observed on an optical spectrum analyzer that views part of the 26 nm spectrum produced through the CFBG.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r ( n ) = m = 0 M 1 A m s ( n m τ ) ,
h ( n ) = m = 0 M 1 A m δ ( n m τ ) ,
H ( z ) = A 0 + A 1 z 1 + A 2 z 2 + + A m 1 z ( m 1 ) = m = 0 M 1 A m z m ,
H ( Ω ) = H ( z ) | z = exp ( j Ω ) .
b M ( n ) = h ( n ) w ( n ) .

Metrics