Abstract

What we believe to be a new inversion procedure for multi- and hyperspectral data in shallow water, represented by the subsurface irradiance and remote sensing reflectance spectra, was developed based on analytical equations by using the method of nonlinear curve fitting. The iteration starts using an automatic determination of the initial values of the fit parameters: concentration of phytoplankton and suspended matter, absorption of gelbstoff, bottom depth, and the fractions of up to six bottom types. Initial values of the bottom depth and suspended matter concentration are estimated analytically. Phytoplankton concentration and gelbstoff absorption are initially calculated by the method of nested intervals. A sensitivity analysis was made to estimate the accuracy of the entire inversion procedure including model error, error propagation, and influence of instrument characteristics such as noise, and radiometric and spectral resolution. The entire inversion technique is included in a public-domain software (WASI) to provide a fast and user-friendly tool of forward and inverse modeling.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Factor analysis of multispectral radiances over coastal and open ocean water based on radiative transfer calculations

Juergen Fischer, Roland Doerffer, and Hartmut Grassl
Appl. Opt. 25(3) 448-456 (1986)

Model for the interpretation of hyperspectral remote-sensing reflectance

Zhongping Lee, Kendall L. Carder, Steve K. Hawes, Robert G. Steward, Thomas G. Peacock, and Curtiss O. Davis
Appl. Opt. 33(24) 5721-5732 (1994)

Hyperspectral remote sensing for shallow waters. I. A semianalytical model

Zhongping Lee, Kendall L. Carder, Curtis D. Mobley, Robert G. Steward, and Jennifer S. Patch
Appl. Opt. 37(27) 6329-6338 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription