Abstract

We demonstrate a highly tunable photonic bandgap fiber, which has a large-core diameter of 25μm and an effective mode area of 440μm2. The tunability is achieved by infiltrating the air holes of a photonic crystal fiber with an optimized liquid-crystal mixture having a large temperature gradient of the refractive indices at room temperature. A bandgap tuning sensitivity of 27  nm/°C is achieved at room temperature. The insertion loss is estimated to be less than 0.5  dB and caused mainly by coupling loss between the index-guided mode and the bandgap-guided mode.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  2. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
    [CrossRef]
  3. F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
    [CrossRef]
  4. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference Technical Digest, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 466-468.
  5. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  6. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber", IEEE Photon. Technol. Lett. 17, 819-821 (2005).
    [CrossRef]
  7. T. T. Alkeskjold, J. Laegsgaard, D. S. Hermann, A. Anawati, J. Broeng, J. Li, S. T. Wu, and A. Bjarklev," All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
    [CrossRef] [PubMed]
  8. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. D. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
    [CrossRef] [PubMed]
  9. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
    [CrossRef] [PubMed]
  10. J. Laegsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A Pure Appl. Opt. 6, 798-804 (2004).
    [CrossRef]
  11. J. Li, S. Gauza, and S. Wu, "High temperature-gradient refractive index liquid crystals," Opt. Express 12, 2002-2010 (2004).
    [CrossRef] [PubMed]
  12. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett. 28, 393-395 (2003).
    [CrossRef] [PubMed]
  13. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
    [CrossRef]
  14. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
    [CrossRef]
  15. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opti. Express 8, 173-190 (2001).
    [CrossRef]
  16. M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. 1, 43-54 (2003).
    [CrossRef]
  17. J. D. Dai and C. K. Jen, "Analysis of cladded uniaxial single-crystal fibers," J. Opt. Soc. Am. A 8, 2021-2025 (1991).
    [CrossRef]
  18. J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
    [CrossRef]
  19. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton," Long wavelength anti-resonant guidance in high index inclusion microstructured fibers ," Opt. Express 12, 5424-5434 (2004).
  20. J. Li, S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys. 96, 19-24 (2004).
    [CrossRef]

2005

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. D. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber", IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

2004

T. T. Alkeskjold, J. Laegsgaard, D. S. Hermann, A. Anawati, J. Broeng, J. Li, S. T. Wu, and A. Bjarklev," All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
[CrossRef] [PubMed]

J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
[CrossRef]

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton," Long wavelength anti-resonant guidance in high index inclusion microstructured fibers ," Opt. Express 12, 5424-5434 (2004).

J. Li, S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys. 96, 19-24 (2004).
[CrossRef]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
[CrossRef] [PubMed]

J. Laegsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A Pure Appl. Opt. 6, 798-804 (2004).
[CrossRef]

J. Li, S. Gauza, and S. Wu, "High temperature-gradient refractive index liquid crystals," Opt. Express 12, 2002-2010 (2004).
[CrossRef] [PubMed]

F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

2003

2002

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

2001

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opti. Express 8, 173-190 (2001).
[CrossRef]

1997

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

1993

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

1991

Albertsen, M.

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. 1, 43-54 (2003).
[CrossRef]

Alerhand, O. L.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Alkeskjold, T. T.

Anawati, A.

Bassi, P.

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference Technical Digest, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 466-468.

Bjarklev, A.

Broeng, J.

Brommer, K. D.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Dai, J. D.

de Sterke, C. M.

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton," Long wavelength anti-resonant guidance in high index inclusion microstructured fibers ," Opt. Express 12, 5424-5434 (2004).

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
[CrossRef] [PubMed]

Dolinski, M.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Dunn, S. C.

Eggleton, B. J.

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
[CrossRef] [PubMed]

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton," Long wavelength anti-resonant guidance in high index inclusion microstructured fibers ," Opt. Express 12, 5424-5434 (2004).

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference Technical Digest, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 466-468.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber", IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Folkenberg, J. R.

Gauza, S.

J. Li, S. Gauza, and S. Wu, "High temperature-gradient refractive index liquid crystals," Opt. Express 12, 2002-2010 (2004).
[CrossRef] [PubMed]

J. Li, S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys. 96, 19-24 (2004).
[CrossRef]

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber", IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Hale, A.

Hermann, D. S.

Hougaard, K.

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. 1, 43-54 (2003).
[CrossRef]

Jen, C. K.

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opti. Express 8, 173-190 (2001).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opti. Express 8, 173-190 (2001).
[CrossRef]

Kerbage, C.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference Technical Digest, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 466-468.

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference Technical Digest, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 466-468.

Kuhlmey, B. T.

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton," Long wavelength anti-resonant guidance in high index inclusion microstructured fibers ," Opt. Express 12, 5424-5434 (2004).

Laegsgaard, J.

Lægsgaard, J.

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. 1, 43-54 (2003).
[CrossRef]

Larsen, T. T.

Li, J.

Libori, S. E. B.

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. 1, 43-54 (2003).
[CrossRef]

Litchinitser, N. M.

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

Mach, P.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

McPhedran, R. C.

Meade, R. D.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Mortensen, N. A.

Nielsen, M. D.

Petersson, A.

Rappe, A. M.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

Riishede, J.

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. D. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber", IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. 1, 43-54 (2003).
[CrossRef]

Rogers, J. A.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Scolari, L.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber", IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. D. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

Simonsen, H. R.

Steel, M. J.

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton," Long wavelength anti-resonant guidance in high index inclusion microstructured fibers ," Opt. Express 12, 5424-5434 (2004).

Steinvurzel, P.

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton," Long wavelength anti-resonant guidance in high index inclusion microstructured fibers ," Opt. Express 12, 5424-5434 (2004).

Steinvurzel, P. E.

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference Technical Digest, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 466-468.

Westbrook, P. S.

White, T. P.

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).
[CrossRef] [PubMed]

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton," Long wavelength anti-resonant guidance in high index inclusion microstructured fibers ," Opt. Express 12, 5424-5434 (2004).

Windeler, R.

Windeler, R. S.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference Technical Digest, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 466-468.

Wu, S.

Wu, S. T.

F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

T. T. Alkeskjold, J. Laegsgaard, D. S. Hermann, A. Anawati, J. Broeng, J. Li, S. T. Wu, and A. Bjarklev," All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
[CrossRef] [PubMed]

J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
[CrossRef]

J. Li, S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys. 96, 19-24 (2004).
[CrossRef]

Appl. Phys. Lett.

F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber", IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

J. Appl. Phys.

J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
[CrossRef]

J. Li, S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys. 96, 19-24 (2004).
[CrossRef]

J. Opt. A Pure Appl. Opt.

J. Laegsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A Pure Appl. Opt. 6, 798-804 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Long wavelength anti-resonant guidance in high index inclusion microstructured fibers

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton," Long wavelength anti-resonant guidance in high index inclusion microstructured fibers ," Opt. Express 12, 5424-5434 (2004).

Opt. Commun.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Opti. Express

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opti. Express 8, 173-190 (2001).
[CrossRef]

Photonics Nanostruct.

M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. 1, 43-54 (2003).
[CrossRef]

Phys. Rev. B

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993).
[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997).
[CrossRef]

Other

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference Technical Digest, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 466-468.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission spectrum for the three-rod core PCF, where the air holes have been filled for 10 mm of the length with the nematic LC E7 (Merck, Darmstadt, Germany). Inset, optical micrograph of the PCF end facet. Hole diameter and interhole distance is 2.9 and 11.2 μm, respectively.

Fig. 2
Fig. 2

Temperature-dependent transmission spectra for the three-rod core PCF, where the air holes have been filled for 10 mm of the length with UCF-1.

Fig. 3
Fig. 3

Wavelength- and temperature-dependent refractive indices ne and no of UCF-1 at T = 25 °C and 27.5 °C. Circles and rectangles are measured refractive indices at λ = 450, 486, 546, 589, 633, and 656 nm and at T = 25 °C and 27.5 °C, respectively. Solid and dashed curves are fitting curves to the extended Cauchy equation. The fitting curves are extrapolated to the infrared region based on the experimental data measured in the visible spectral region.

Fig. 4
Fig. 4

Transmission spectrum of the UCF-1 filled PCF (solid curve) and simulated coupling loss (dotted curve) from the index-guiding to the bandgap-guiding part of the PCF. Insets show an index-guided mode and PBG guided modes at the bandgap center and edge. The mode profiles have been normalized to equal intensity and to exhibit the same contour levels.

Fig. 5
Fig. 5

dno ∕dT and −dne ∕dT for E7 and UCF-1 calculated at λ = 589 nm.

Metrics