Abstract

The power spectrum of the laser intensity is studied when optical feedback in a laser diode is used as a sensing configuration for dynamic light-scattering experiments. We present a theory that relates the power spectrum obtained from standard dynamic light-scattering theory to the intensity power spectrum of the laser. This theory provides a concise description of this sensing technique, also known as self-mixing interferometry, when it is applied to Doppler shift and line-broadening measurements of the backscattered field.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Z. Cummins, N. Knable, and Y. Yeh, "Observation of diffusion broadening of Rayleigh scattered light," Phys. Rev. Lett. 12, 150-153 (1964).
    [CrossRef]
  2. Y. Yeh and H. Z. Cummins, "Localized fluid flow measurements with an He-Ne laser spectrometer," Appl. Phys Lett. 4, 176-178 (1964).
    [CrossRef]
  3. H. Z. Cummins and H. L. Swinney, "Light beating spectroscopy," Prog. Opt. 8, 135-200 (1970).
  4. E. R. Pike, "The application of photon correlation spectroscopy to laser Doppler measurements," J. Phys D. 5, L23-L25 (1972).
    [CrossRef]
  5. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, 1976).
  6. M. F. Clapper, J. S. Collura, D. Harrison, and M. R. Fisch, "Transition from diffusing to dynamic light scattering in solutions of monodisperse polystyrene spheres," Phys. Rev. E 59, 3631-3636 (1999).
    [CrossRef]
  7. B. J. Frisken, "Revisiting the method of cumulants for the analysis of dynamic light-scattering data," Appl. Opt. 40, 4087-4091 (2001).
  8. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt. 25, 1417-1419 (1986).
  9. M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).
  10. F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).
  11. M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992).
  12. F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwinjnen, P. Moes, and W. Steenbergen, "Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis," Appl. Opt. 41, 658-667 (2002).
  13. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: application to vibration and velocity measurement," IEEE Trans. Instrum. Meas. 53, 223-232 (2004).
    [CrossRef]
  14. S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vivo and in vitro experiments," Opt. Eng. 39, 2574-2580 (2000).
    [CrossRef]
  15. S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
    [CrossRef]
  16. C. Zakian, M. Dickinson, and T. King, "Particle-sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A Pure Appl. Opt. 7, S445-S452 (2005).
  17. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum. Electron. 16, 347-355 (1980).
    [CrossRef]
  18. J. Martin, Y. Zhao, S. Balle, K. Bergmann, and M. P. Fewell, "Visible-wavelength diode laser with weak frequency-shifted optical feedback," Opt. Commun. 112, 109-121 (1994).
    [CrossRef]
  19. E. Lacot, R. Day, and F. Stoeckel, "Coherent laser detection by frequency-shifted optical feedback," Phys Rev. A 64043815 (2001).
  20. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 1981).
  21. D. J. I. Tritton, Physical Fluid Dynamics (Oxford Science Publications, 1988).
  22. B. Tromborg, J. H. Osmundsen, and H. Olesen, "Stability analysis for a semiconductor laser in an external cavity," IEEE J. Quantum. Electron. 20, 1023-1032 (1984).
    [CrossRef]
  23. D. Lenstra, B. H. Verbeek, and A. J. Den Boef, "Coherence collapse in single-mode semiconductor lasers due to optical feedback," IEEE J. Quantum. Electron. 21, 674-679 (1985).
    [CrossRef]
  24. R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. 4, 1655-1661 (1986).
  25. G. H. M. Van Tartwijk and D. Lenstra, "Semiconductor lasers with optical injection and feedback," Quantum Semiclassic. Opt. 7, 87-143 (1995).
    [CrossRef]
  26. P. I. Richter and T. W. Hänsch, "Diode lasers in external cavities with frequency-shifted feedback," Opt. Commun. 85, 414-418 (1991).
    [CrossRef]

2005

C. Zakian, M. Dickinson, and T. King, "Particle-sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A Pure Appl. Opt. 7, S445-S452 (2005).

2004

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: application to vibration and velocity measurement," IEEE Trans. Instrum. Meas. 53, 223-232 (2004).
[CrossRef]

2002

2001

2000

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vivo and in vitro experiments," Opt. Eng. 39, 2574-2580 (2000).
[CrossRef]

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

1999

M. F. Clapper, J. S. Collura, D. Harrison, and M. R. Fisch, "Transition from diffusing to dynamic light scattering in solutions of monodisperse polystyrene spheres," Phys. Rev. E 59, 3631-3636 (1999).
[CrossRef]

1995

G. H. M. Van Tartwijk and D. Lenstra, "Semiconductor lasers with optical injection and feedback," Quantum Semiclassic. Opt. 7, 87-143 (1995).
[CrossRef]

1994

J. Martin, Y. Zhao, S. Balle, K. Bergmann, and M. P. Fewell, "Visible-wavelength diode laser with weak frequency-shifted optical feedback," Opt. Commun. 112, 109-121 (1994).
[CrossRef]

1992

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992).

1991

P. I. Richter and T. W. Hänsch, "Diode lasers in external cavities with frequency-shifted feedback," Opt. Commun. 85, 414-418 (1991).
[CrossRef]

1986

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. 4, 1655-1661 (1986).

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt. 25, 1417-1419 (1986).

1985

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, "Coherence collapse in single-mode semiconductor lasers due to optical feedback," IEEE J. Quantum. Electron. 21, 674-679 (1985).
[CrossRef]

1984

B. Tromborg, J. H. Osmundsen, and H. Olesen, "Stability analysis for a semiconductor laser in an external cavity," IEEE J. Quantum. Electron. 20, 1023-1032 (1984).
[CrossRef]

1980

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum. Electron. 16, 347-355 (1980).
[CrossRef]

1972

E. R. Pike, "The application of photon correlation spectroscopy to laser Doppler measurements," J. Phys D. 5, L23-L25 (1972).
[CrossRef]

1970

H. Z. Cummins and H. L. Swinney, "Light beating spectroscopy," Prog. Opt. 8, 135-200 (1970).

1964

H. Z. Cummins, N. Knable, and Y. Yeh, "Observation of diffusion broadening of Rayleigh scattered light," Phys. Rev. Lett. 12, 150-153 (1964).
[CrossRef]

Y. Yeh and H. Z. Cummins, "Localized fluid flow measurements with an He-Ne laser spectrometer," Appl. Phys Lett. 4, 176-178 (1964).
[CrossRef]

Aarnoudse, J. G.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992).

Balle, S.

J. Martin, Y. Zhao, S. Balle, K. Bergmann, and M. P. Fewell, "Visible-wavelength diode laser with weak frequency-shifted optical feedback," Opt. Commun. 112, 109-121 (1994).
[CrossRef]

Bergmann, K.

J. Martin, Y. Zhao, S. Balle, K. Bergmann, and M. P. Fewell, "Visible-wavelength diode laser with weak frequency-shifted optical feedback," Opt. Commun. 112, 109-121 (1994).
[CrossRef]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, 1976).

Bosch, T.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: application to vibration and velocity measurement," IEEE Trans. Instrum. Meas. 53, 223-232 (2004).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. 4, 1655-1661 (1986).

Clapper, M. F.

M. F. Clapper, J. S. Collura, D. Harrison, and M. R. Fisch, "Transition from diffusing to dynamic light scattering in solutions of monodisperse polystyrene spheres," Phys. Rev. E 59, 3631-3636 (1999).
[CrossRef]

Collura, J. S.

M. F. Clapper, J. S. Collura, D. Harrison, and M. R. Fisch, "Transition from diffusing to dynamic light scattering in solutions of monodisperse polystyrene spheres," Phys. Rev. E 59, 3631-3636 (1999).
[CrossRef]

Cummins, H. Z.

H. Z. Cummins and H. L. Swinney, "Light beating spectroscopy," Prog. Opt. 8, 135-200 (1970).

Y. Yeh and H. Z. Cummins, "Localized fluid flow measurements with an He-Ne laser spectrometer," Appl. Phys Lett. 4, 176-178 (1964).
[CrossRef]

H. Z. Cummins, N. Knable, and Y. Yeh, "Observation of diffusion broadening of Rayleigh scattered light," Phys. Rev. Lett. 12, 150-153 (1964).
[CrossRef]

Dassel, A. C. M.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992).

F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).

Day, R.

E. Lacot, R. Day, and F. Stoeckel, "Coherent laser detection by frequency-shifted optical feedback," Phys Rev. A 64043815 (2001).

de Mul, F. F. M.

Den Boef, A. J.

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, "Coherence collapse in single-mode semiconductor lasers due to optical feedback," IEEE J. Quantum. Electron. 21, 674-679 (1985).
[CrossRef]

Dickinson, M.

C. Zakian, M. Dickinson, and T. King, "Particle-sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A Pure Appl. Opt. 7, S445-S452 (2005).

Fewell, M. P.

J. Martin, Y. Zhao, S. Balle, K. Bergmann, and M. P. Fewell, "Visible-wavelength diode laser with weak frequency-shifted optical feedback," Opt. Commun. 112, 109-121 (1994).
[CrossRef]

Fisch, M. R.

M. F. Clapper, J. S. Collura, D. Harrison, and M. R. Fisch, "Transition from diffusing to dynamic light scattering in solutions of monodisperse polystyrene spheres," Phys. Rev. E 59, 3631-3636 (1999).
[CrossRef]

Frisken, B. J.

Giuliani, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: application to vibration and velocity measurement," IEEE Trans. Instrum. Meas. 53, 223-232 (2004).
[CrossRef]

Graaff, R.

Graff, R.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).

Greve, J.

F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992).

Hänsch, T. W.

P. I. Richter and T. W. Hänsch, "Diode lasers in external cavities with frequency-shifted feedback," Opt. Commun. 85, 414-418 (1991).
[CrossRef]

Harrison, D.

M. F. Clapper, J. S. Collura, D. Harrison, and M. R. Fisch, "Transition from diffusing to dynamic light scattering in solutions of monodisperse polystyrene spheres," Phys. Rev. E 59, 3631-3636 (1999).
[CrossRef]

King, T.

C. Zakian, M. Dickinson, and T. King, "Particle-sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A Pure Appl. Opt. 7, S445-S452 (2005).

Knable, N.

H. Z. Cummins, N. Knable, and Y. Yeh, "Observation of diffusion broadening of Rayleigh scattered light," Phys. Rev. Lett. 12, 150-153 (1964).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum. Electron. 16, 347-355 (1980).
[CrossRef]

Koelink, M. H.

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992).

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).

Lacot, E.

E. Lacot, R. Day, and F. Stoeckel, "Coherent laser detection by frequency-shifted optical feedback," Phys Rev. A 64043815 (2001).

Lang, R.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum. Electron. 16, 347-355 (1980).
[CrossRef]

Lenstra, D.

G. H. M. Van Tartwijk and D. Lenstra, "Semiconductor lasers with optical injection and feedback," Quantum Semiclassic. Opt. 7, 87-143 (1995).
[CrossRef]

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, "Coherence collapse in single-mode semiconductor lasers due to optical feedback," IEEE J. Quantum. Electron. 21, 674-679 (1985).
[CrossRef]

Martin, J.

J. Martin, Y. Zhao, S. Balle, K. Bergmann, and M. P. Fewell, "Visible-wavelength diode laser with weak frequency-shifted optical feedback," Opt. Commun. 112, 109-121 (1994).
[CrossRef]

Mochizuki, A.

Moes, P.

Olesen, H.

B. Tromborg, J. H. Osmundsen, and H. Olesen, "Stability analysis for a semiconductor laser in an external cavity," IEEE J. Quantum. Electron. 20, 1023-1032 (1984).
[CrossRef]

Osmundsen, J. H.

B. Tromborg, J. H. Osmundsen, and H. Olesen, "Stability analysis for a semiconductor laser in an external cavity," IEEE J. Quantum. Electron. 20, 1023-1032 (1984).
[CrossRef]

Özdemir, S. K.

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vivo and in vitro experiments," Opt. Eng. 39, 2574-2580 (2000).
[CrossRef]

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, 1976).

Petoukhova, A. L.

Pike, E. R.

E. R. Pike, "The application of photon correlation spectroscopy to laser Doppler measurements," J. Phys D. 5, L23-L25 (1972).
[CrossRef]

Plantier, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: application to vibration and velocity measurement," IEEE Trans. Instrum. Meas. 53, 223-232 (2004).
[CrossRef]

Richter, P. I.

P. I. Richter and T. W. Hänsch, "Diode lasers in external cavities with frequency-shifted feedback," Opt. Commun. 85, 414-418 (1991).
[CrossRef]

Scalise, L.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: application to vibration and velocity measurement," IEEE Trans. Instrum. Meas. 53, 223-232 (2004).
[CrossRef]

F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwinjnen, P. Moes, and W. Steenbergen, "Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis," Appl. Opt. 41, 658-667 (2002).

Scholten, F. G.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

Shinohara, S.

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vivo and in vitro experiments," Opt. Eng. 39, 2574-2580 (2000).
[CrossRef]

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt. 25, 1417-1419 (1986).

Slot, M.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992).

Steenbergen, W.

Stoeckel, F.

E. Lacot, R. Day, and F. Stoeckel, "Coherent laser detection by frequency-shifted optical feedback," Phys Rev. A 64043815 (2001).

Sumi, M.

Swinney, H. L.

H. Z. Cummins and H. L. Swinney, "Light beating spectroscopy," Prog. Opt. 8, 135-200 (1970).

Takamiya, S.

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vivo and in vitro experiments," Opt. Eng. 39, 2574-2580 (2000).
[CrossRef]

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. 4, 1655-1661 (1986).

Tritton, D. J. I.

D. J. I. Tritton, Physical Fluid Dynamics (Oxford Science Publications, 1988).

Tromborg, B.

B. Tromborg, J. H. Osmundsen, and H. Olesen, "Stability analysis for a semiconductor laser in an external cavity," IEEE J. Quantum. Electron. 20, 1023-1032 (1984).
[CrossRef]

Tuynman, F. H. B.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

van Herwinjnen, M.

van Kampen, N. G.

N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 1981).

Van Tartwijk, G. H. M.

G. H. M. Van Tartwijk and D. Lenstra, "Semiconductor lasers with optical injection and feedback," Quantum Semiclassic. Opt. 7, 87-143 (1995).
[CrossRef]

Verbeek, B. H.

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, "Coherence collapse in single-mode semiconductor lasers due to optical feedback," IEEE J. Quantum. Electron. 21, 674-679 (1985).
[CrossRef]

Weijers, A. L.

F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

Yeh, Y.

H. Z. Cummins, N. Knable, and Y. Yeh, "Observation of diffusion broadening of Rayleigh scattered light," Phys. Rev. Lett. 12, 150-153 (1964).
[CrossRef]

Y. Yeh and H. Z. Cummins, "Localized fluid flow measurements with an He-Ne laser spectrometer," Appl. Phys Lett. 4, 176-178 (1964).
[CrossRef]

Yoshida, H.

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vivo and in vitro experiments," Opt. Eng. 39, 2574-2580 (2000).
[CrossRef]

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt. 25, 1417-1419 (1986).

Yu, Y.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: application to vibration and velocity measurement," IEEE Trans. Instrum. Meas. 53, 223-232 (2004).
[CrossRef]

Zakian, C.

C. Zakian, M. Dickinson, and T. King, "Particle-sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A Pure Appl. Opt. 7, S445-S452 (2005).

Zhao, Y.

J. Martin, Y. Zhao, S. Balle, K. Bergmann, and M. P. Fewell, "Visible-wavelength diode laser with weak frequency-shifted optical feedback," Opt. Commun. 112, 109-121 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys Lett.

Y. Yeh and H. Z. Cummins, "Localized fluid flow measurements with an He-Ne laser spectrometer," Appl. Phys Lett. 4, 176-178 (1964).
[CrossRef]

IEEE J. Quantum. Electron.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum. Electron. 16, 347-355 (1980).
[CrossRef]

B. Tromborg, J. H. Osmundsen, and H. Olesen, "Stability analysis for a semiconductor laser in an external cavity," IEEE J. Quantum. Electron. 20, 1023-1032 (1984).
[CrossRef]

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, "Coherence collapse in single-mode semiconductor lasers due to optical feedback," IEEE J. Quantum. Electron. 21, 674-679 (1985).
[CrossRef]

IEEE Trans. Instrum. Meas.

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Self-mixing laser speckle velocimeter for blood flow measurement," IEEE Trans. Instrum. Meas. 49, 1029-1035 (2000).
[CrossRef]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, "Self-mixing laser diode velocimetry: application to vibration and velocity measurement," IEEE Trans. Instrum. Meas. 53, 223-232 (2004).
[CrossRef]

J. Lightwave Technol.

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. 4, 1655-1661 (1986).

J. Opt. A

C. Zakian, M. Dickinson, and T. King, "Particle-sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A Pure Appl. Opt. 7, S445-S452 (2005).

J. Phys D.

E. R. Pike, "The application of photon correlation spectroscopy to laser Doppler measurements," J. Phys D. 5, L23-L25 (1972).
[CrossRef]

Med. Biol. Eng. Comput.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).

Opt. Commun.

J. Martin, Y. Zhao, S. Balle, K. Bergmann, and M. P. Fewell, "Visible-wavelength diode laser with weak frequency-shifted optical feedback," Opt. Commun. 112, 109-121 (1994).
[CrossRef]

P. I. Richter and T. W. Hänsch, "Diode lasers in external cavities with frequency-shifted feedback," Opt. Commun. 85, 414-418 (1991).
[CrossRef]

Opt. Eng.

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vivo and in vitro experiments," Opt. Eng. 39, 2574-2580 (2000).
[CrossRef]

Phys Rev. A

E. Lacot, R. Day, and F. Stoeckel, "Coherent laser detection by frequency-shifted optical feedback," Phys Rev. A 64043815 (2001).

Phys. Rev. E

M. F. Clapper, J. S. Collura, D. Harrison, and M. R. Fisch, "Transition from diffusing to dynamic light scattering in solutions of monodisperse polystyrene spheres," Phys. Rev. E 59, 3631-3636 (1999).
[CrossRef]

Phys. Rev. Lett.

H. Z. Cummins, N. Knable, and Y. Yeh, "Observation of diffusion broadening of Rayleigh scattered light," Phys. Rev. Lett. 12, 150-153 (1964).
[CrossRef]

Prog. Opt.

H. Z. Cummins and H. L. Swinney, "Light beating spectroscopy," Prog. Opt. 8, 135-200 (1970).

Quantum Semiclassic. Opt.

G. H. M. Van Tartwijk and D. Lenstra, "Semiconductor lasers with optical injection and feedback," Quantum Semiclassic. Opt. 7, 87-143 (1995).
[CrossRef]

Other

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, 1976).

N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 1981).

D. J. I. Tritton, Physical Fluid Dynamics (Oxford Science Publications, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Three-mirror cavity model used to analyze the optical feedback configuration: r 0 and r 1 , laser mirror reflectivities; r 2 , external (target) reflectivity; l L D , cavity length; μ, refractive index of the gain media; L, distance to the external target.

Fig. 2
Fig. 2

Experimental setup. L 1 lens (focal length f = 20   mm ), L 2 lens (focal length f = 4.5   mm ), laser diode (LD) with photodiode (PD) in-package Sanyo DL4140-001S, laser diode driver Thorlabs LD1255, 100   kHz low-pass filter amplifier, and FFT oscilloscope Tektronix TEK2014 connected to a computer to perform averaging and analysis. The target depends upon the application.

Fig. 3
Fig. 3

Normalized photodiode (PD) voltage spectrum showing a single-frequency peak produced by a wheel rotating at constant velocity. Data were previously reported elsewhere[16] but are included here for completeness.

Fig. 4
Fig. 4

(Color online) Normalized photodiode (PD) voltage spectrum showing the diffusion broadening caused by a monodispersed suspension of polystyrene spheres with diameter d. Top, pure water (no polystyrene spheres); middle, d = 58.8   nm ; bottom, d = 20   nm . The points correspond to the experimental data and the solid curves to the fitted Lorentzian function. Data were previously reported elsewhere[16] but are included here for completeness.

Fig. 5
Fig. 5

(Color online) Normalized photodiode (PD) voltage spectrum for scattering from a highly diluted sample of 1 .15   μm polystyrene spheres set to laminar flow in a small tube. The points correspond to the experimental data and the solid curve to a sum of two fitted Lorentzian functions, one centered at zero frequency, and the second one at 26.3 kHz).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) = k s E 0 exp ( i ω t ) δ α ( q , t ) .
C I ( q , t ) δ α * ( q , 0 ) δ α ( q , t ) .
Z ( q , Ω ) = δ α ( q , Ω ) δ α * ( q , Ω ) = | δ α ( q , Ω ) | 2 1 / 2 π { C I ( q , t ) } exp ( i Ω t ) d t ,
d d t  E ( t ) exp ( i ω t ) = { i ω c ( n ) + 1 2 [ G ( n , E 2 ( t ) ] Γ 0 ] } ×  E ( t ) exp ( i ω t ) + κ E ( t τ ) ×  exp [ i ω ( t τ ) ] .
G [ n , E 2 ( t ) ] = G 0 ( n n 0 ) [ 1 ϵ E 2 ( t ) ] ,
d d t n = γ n G [ n , E 2 ( t ) ] | E | 2 + J e d ,
d d t E ( t ) exp ( i ω t ) = { i ω c ( n ) + 1 2 [ G ( n , E 2 ( t ) Γ 0 ) ] } ×  E ( t ) exp ( i ω t ) + κ s E ( t τ ) ×  exp [ i ω ( t τ / 2 ) ] δ α ( t ) ,
d d t E ( t ) = { 1 2 [ G ( n , E 2 ( t ) Γ 0 ) ] } E ( t ) + κ s E ( t ) δ α τ ( t ) ,
Δ n ( s ) = - 2 β ( n s n 0 ) E s s 2 + ( γ + β E s     2 ) s + β 2 ( n s n 0 ) E s     2 × κ s E s δ α τ     R ( s ) ,
Δ E c ( s ) = [ s + ( γ + β E s     2 ) ] s 2 + ( γ + β E s     2 ) s + β 2 ( n s n 0 ) E s     2 × κ s E s δ α τ     R ( s ) ,
Δ ϕ ( s ) = ( 1 / s ) κ s δ α T I ( s ) .
S ( t ) = η [ E s     2 + 2 E s Δ E c ( t ) ] = S s + Δ S ( t ) .
Z ( Ω ) = 4 η 2 E s     2 | H L P ( i Ω ) | 2 | δ α τ     R ( ) | 2 ,
H L P ( i Ω ) = [ ( γ + β E s     2 ) + i Ω β 2 ( n s n 0 ) E s     2 Ω 2 + i Ω ( γ + β E s     2 ) ] .

Metrics