Abstract

We compare results for the number-weighted mean radius and polydispersity obtained either by directly fitting number distributions to dynamic light-scattering data or by converting results obtained by fitting intensity-weighted distributions. We find that results from fits using number distributions are angle independent and that converting intensity-weighted distributions is not always reliable, especially when the polydispersity of the sample is large. We compare the results of fitting symmetric and asymmetric distributions, as represented by Gaussian and Schulz distributions, respectively, to data for extruded vesicles and find that the Schulz distribution provides a better estimate of the size distribution for these samples.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Robert E. Krieger, 1990).
  2. P. Stepánek, "Data analysis in dynamic light scattering," in Dynamic Light Scattering: the Method and Some Applications, W.Brown, ed. (Oxford U. Press, 1993), pp. 177-241.
  3. D. E. Koppel, "Analysis of macromolecular polydispersity in intensity autocorrelation spectroscopy: the method of cumulants," J. Chem. Phys. 57, 4814-4820 (1972).
    [Crossref]
  4. B. J. Frisken, "Revisiting the method of cumulants for analysis dynamic light scattering data," J. Appl. Opt. 40, 4087-4091 (2001).
    [Crossref]
  5. S. Provencher, "Contin: a general purpose constrained regularization program for inverting noise linear algebraic and integral equations," Comp. Phys. Commun. 27, 229-242 (1982).
    [Crossref]
  6. S. Provencher, "A constrained regularization method for inverting data represented by linear algebraic or integral equations," Comp. Phys. Commun. 27, 213-227 (1982).
    [Crossref]
  7. L. D. Mayer, M. J. Hope, and P. R. Cullis, "Vesicles of variable sizes produced by a rapid extrusion procedure," Biochim. Biophys. Acta 858, 161-168 (1986).
    [Crossref] [PubMed]
  8. B. Mui, P. R. Cullis, E. Evans, and T. D. Madden, "Osmotic properties of large unilamellar vesicles prepared by extrusion," Biophys. J. 64, 443-453 (1993).
    [Crossref] [PubMed]
  9. Y. Talmon, J. L. Burns, M. H. Chesnut, and D. P. Siegel, "Time-resolved cryotransmission electron microscopy," J. Electron Microsc. Tech. 14, 6-12 (1990).
    [Crossref] [PubMed]
  10. M. Almgren, K. Edwards, and G. Karlsson, "Cryotransmission electron microscopy of liposomes and related structures," Colloid. Surf. A 174, 3-21 (2000).
    [Crossref]
  11. B. A. Korgel, J. H. van Zanten, and H. G. Monbouquette, "Vesicle size distribution measured by field-flow-fractionation coupled with multiangle light scattering," Biophys. J. 74, 3264-3272 (1998).
    [Crossref] [PubMed]
  12. J. H. van Zanten and H. G. Monbouquette, "Characterization of vesicles by classical light scattering," J. Colloid Interface Sci. 146, 330-336 (1991).
    [Crossref]
  13. J. H. van Zanten and H. G. Monbouquette, "Phosphatidylcholine vesicle diameter, molecular weight and wall thickness determined by static light-scattering," J. Colloid Interface Sci. 165, 512-518 (1994).
    [Crossref]
  14. J. C. Selser and R. J. Baskin, "A light scattering characterization of membrane vesicles," Biophys. J. 16, 337-356 (1976).
    [Crossref] [PubMed]
  15. F. R. Hallett, J. Watton, and P. Krygsman, "Vesicle sizing-number distribution by dynamic light scattering," Biophys. J. 59, 357-362 (1991).
    [Crossref] [PubMed]
  16. S. Kölchens, V. Ramaswami, J. Birgenheier, L. Nett, and D. F. O'Brien, "Quasi-elastic light scattering determination of the size distribution of extruded vesicles," Chem. Phys. Lipids 65, 1-10 (1993).
    [Crossref] [PubMed]
  17. A. J. Jin, D. Huster, and K. Gawrisch, "Light scattering characterization of extruded lipid vesicles," Eur. Biophys. J. 28, 187-199 (1999).
    [Crossref] [PubMed]
  18. B. J. Frisken, C. Asman, and P. J. Patty, "Studies of vesicle extrusion," Langmuir 16, 928-933 (2000).
    [Crossref]
  19. P. J. Patty and B. J. Frisken, "The pressure-dependence of the size of extruded vesicles," Biophys. J. 85, 996-1004 (2003).
    [Crossref] [PubMed]
  20. F. R. Hallett, T. Craig, J. Marsh, and B. Nickel, "Particle size analysis: number distributions by dynamic light scattering," Can. J. Spectrosc. 34, 63-70 (1989).
  21. G. Bryant, C. Abeynayake, and J. C. Thomas, "Improve particle size distribution measurements using multiangle dynamic light scattering. 2. Refinements and applications," Langmuir 12, 6224-6228 (1996).
    [Crossref]
  22. L. H. Hanus and H. J. Ploehn, "Conversion of intensity-average photon correlation spectroscopy measurements to number-average particles size distributions. 1. Theoretical development," Langmuir 15, 3091-3100 (1999).
    [Crossref]
  23. J. C. Thomas, "The determination of log normal particle size distributions by dynamic light scattering," J. Colloid Interface Sci. 117, 187-192 (1987).
    [Crossref]
  24. C. B. Bargeron, "Measurements of continuous distribution of spherical particles by intensity correlation spectroscopy: analysis by cumulants," J. Chem. Phys. 61, 2134-2138 (1974).
    [Crossref]
  25. D. S. Horne, "Determination of the size distribution of bovine casein micelles using photon correlation spectroscopy," J. Colloid Interface Sci. 98, 537-548 (1984).
    [Crossref]
  26. T. W. Taylor, S. M. Scrivner, C. M. Sorensen, and J. F. Merklin, "Determination of the relative number distribution of particle sizes using photon correlation spectroscopy," Appl. Opt. 24, 3713-3717 (1985).
    [Crossref] [PubMed]
  27. J. C. Selser, "Letter: a light scattering method of measuring membrane vesicle-number average size and size dispersion," Biophys. J. 16, 847-848 (1976).
    [Crossref] [PubMed]
  28. J. Pencer and F. R. Hallett, "Effects of vesicle size and shape on static and dynamic light scattering measurements," Langmuir 19, 7488-7497 (2003).
    [Crossref]
  29. D. G. Hunter and B. J. Frisken, "The effects of lipid composition and extrusion pressure and temperature on the properties of phospholipid vesicles," Biophys. J. 74, 2996-3000 (1998).
    [Crossref] [PubMed]

2003 (2)

P. J. Patty and B. J. Frisken, "The pressure-dependence of the size of extruded vesicles," Biophys. J. 85, 996-1004 (2003).
[Crossref] [PubMed]

J. Pencer and F. R. Hallett, "Effects of vesicle size and shape on static and dynamic light scattering measurements," Langmuir 19, 7488-7497 (2003).
[Crossref]

2001 (1)

B. J. Frisken, "Revisiting the method of cumulants for analysis dynamic light scattering data," J. Appl. Opt. 40, 4087-4091 (2001).
[Crossref]

2000 (2)

M. Almgren, K. Edwards, and G. Karlsson, "Cryotransmission electron microscopy of liposomes and related structures," Colloid. Surf. A 174, 3-21 (2000).
[Crossref]

B. J. Frisken, C. Asman, and P. J. Patty, "Studies of vesicle extrusion," Langmuir 16, 928-933 (2000).
[Crossref]

1999 (2)

A. J. Jin, D. Huster, and K. Gawrisch, "Light scattering characterization of extruded lipid vesicles," Eur. Biophys. J. 28, 187-199 (1999).
[Crossref] [PubMed]

L. H. Hanus and H. J. Ploehn, "Conversion of intensity-average photon correlation spectroscopy measurements to number-average particles size distributions. 1. Theoretical development," Langmuir 15, 3091-3100 (1999).
[Crossref]

1998 (2)

D. G. Hunter and B. J. Frisken, "The effects of lipid composition and extrusion pressure and temperature on the properties of phospholipid vesicles," Biophys. J. 74, 2996-3000 (1998).
[Crossref] [PubMed]

B. A. Korgel, J. H. van Zanten, and H. G. Monbouquette, "Vesicle size distribution measured by field-flow-fractionation coupled with multiangle light scattering," Biophys. J. 74, 3264-3272 (1998).
[Crossref] [PubMed]

1996 (1)

G. Bryant, C. Abeynayake, and J. C. Thomas, "Improve particle size distribution measurements using multiangle dynamic light scattering. 2. Refinements and applications," Langmuir 12, 6224-6228 (1996).
[Crossref]

1994 (1)

J. H. van Zanten and H. G. Monbouquette, "Phosphatidylcholine vesicle diameter, molecular weight and wall thickness determined by static light-scattering," J. Colloid Interface Sci. 165, 512-518 (1994).
[Crossref]

1993 (2)

S. Kölchens, V. Ramaswami, J. Birgenheier, L. Nett, and D. F. O'Brien, "Quasi-elastic light scattering determination of the size distribution of extruded vesicles," Chem. Phys. Lipids 65, 1-10 (1993).
[Crossref] [PubMed]

B. Mui, P. R. Cullis, E. Evans, and T. D. Madden, "Osmotic properties of large unilamellar vesicles prepared by extrusion," Biophys. J. 64, 443-453 (1993).
[Crossref] [PubMed]

1991 (2)

J. H. van Zanten and H. G. Monbouquette, "Characterization of vesicles by classical light scattering," J. Colloid Interface Sci. 146, 330-336 (1991).
[Crossref]

F. R. Hallett, J. Watton, and P. Krygsman, "Vesicle sizing-number distribution by dynamic light scattering," Biophys. J. 59, 357-362 (1991).
[Crossref] [PubMed]

1990 (1)

Y. Talmon, J. L. Burns, M. H. Chesnut, and D. P. Siegel, "Time-resolved cryotransmission electron microscopy," J. Electron Microsc. Tech. 14, 6-12 (1990).
[Crossref] [PubMed]

1989 (1)

F. R. Hallett, T. Craig, J. Marsh, and B. Nickel, "Particle size analysis: number distributions by dynamic light scattering," Can. J. Spectrosc. 34, 63-70 (1989).

1987 (1)

J. C. Thomas, "The determination of log normal particle size distributions by dynamic light scattering," J. Colloid Interface Sci. 117, 187-192 (1987).
[Crossref]

1986 (1)

L. D. Mayer, M. J. Hope, and P. R. Cullis, "Vesicles of variable sizes produced by a rapid extrusion procedure," Biochim. Biophys. Acta 858, 161-168 (1986).
[Crossref] [PubMed]

1985 (1)

1984 (1)

D. S. Horne, "Determination of the size distribution of bovine casein micelles using photon correlation spectroscopy," J. Colloid Interface Sci. 98, 537-548 (1984).
[Crossref]

1982 (2)

S. Provencher, "Contin: a general purpose constrained regularization program for inverting noise linear algebraic and integral equations," Comp. Phys. Commun. 27, 229-242 (1982).
[Crossref]

S. Provencher, "A constrained regularization method for inverting data represented by linear algebraic or integral equations," Comp. Phys. Commun. 27, 213-227 (1982).
[Crossref]

1976 (2)

J. C. Selser and R. J. Baskin, "A light scattering characterization of membrane vesicles," Biophys. J. 16, 337-356 (1976).
[Crossref] [PubMed]

J. C. Selser, "Letter: a light scattering method of measuring membrane vesicle-number average size and size dispersion," Biophys. J. 16, 847-848 (1976).
[Crossref] [PubMed]

1974 (1)

C. B. Bargeron, "Measurements of continuous distribution of spherical particles by intensity correlation spectroscopy: analysis by cumulants," J. Chem. Phys. 61, 2134-2138 (1974).
[Crossref]

1972 (1)

D. E. Koppel, "Analysis of macromolecular polydispersity in intensity autocorrelation spectroscopy: the method of cumulants," J. Chem. Phys. 57, 4814-4820 (1972).
[Crossref]

Abeynayake, C.

G. Bryant, C. Abeynayake, and J. C. Thomas, "Improve particle size distribution measurements using multiangle dynamic light scattering. 2. Refinements and applications," Langmuir 12, 6224-6228 (1996).
[Crossref]

Almgren, M.

M. Almgren, K. Edwards, and G. Karlsson, "Cryotransmission electron microscopy of liposomes and related structures," Colloid. Surf. A 174, 3-21 (2000).
[Crossref]

Asman, C.

B. J. Frisken, C. Asman, and P. J. Patty, "Studies of vesicle extrusion," Langmuir 16, 928-933 (2000).
[Crossref]

Bargeron, C. B.

C. B. Bargeron, "Measurements of continuous distribution of spherical particles by intensity correlation spectroscopy: analysis by cumulants," J. Chem. Phys. 61, 2134-2138 (1974).
[Crossref]

Baskin, R. J.

J. C. Selser and R. J. Baskin, "A light scattering characterization of membrane vesicles," Biophys. J. 16, 337-356 (1976).
[Crossref] [PubMed]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Robert E. Krieger, 1990).

Birgenheier, J.

S. Kölchens, V. Ramaswami, J. Birgenheier, L. Nett, and D. F. O'Brien, "Quasi-elastic light scattering determination of the size distribution of extruded vesicles," Chem. Phys. Lipids 65, 1-10 (1993).
[Crossref] [PubMed]

Bryant, G.

G. Bryant, C. Abeynayake, and J. C. Thomas, "Improve particle size distribution measurements using multiangle dynamic light scattering. 2. Refinements and applications," Langmuir 12, 6224-6228 (1996).
[Crossref]

Burns, J. L.

Y. Talmon, J. L. Burns, M. H. Chesnut, and D. P. Siegel, "Time-resolved cryotransmission electron microscopy," J. Electron Microsc. Tech. 14, 6-12 (1990).
[Crossref] [PubMed]

Chesnut, M. H.

Y. Talmon, J. L. Burns, M. H. Chesnut, and D. P. Siegel, "Time-resolved cryotransmission electron microscopy," J. Electron Microsc. Tech. 14, 6-12 (1990).
[Crossref] [PubMed]

Craig, T.

F. R. Hallett, T. Craig, J. Marsh, and B. Nickel, "Particle size analysis: number distributions by dynamic light scattering," Can. J. Spectrosc. 34, 63-70 (1989).

Cullis, P. R.

B. Mui, P. R. Cullis, E. Evans, and T. D. Madden, "Osmotic properties of large unilamellar vesicles prepared by extrusion," Biophys. J. 64, 443-453 (1993).
[Crossref] [PubMed]

L. D. Mayer, M. J. Hope, and P. R. Cullis, "Vesicles of variable sizes produced by a rapid extrusion procedure," Biochim. Biophys. Acta 858, 161-168 (1986).
[Crossref] [PubMed]

Edwards, K.

M. Almgren, K. Edwards, and G. Karlsson, "Cryotransmission electron microscopy of liposomes and related structures," Colloid. Surf. A 174, 3-21 (2000).
[Crossref]

Evans, E.

B. Mui, P. R. Cullis, E. Evans, and T. D. Madden, "Osmotic properties of large unilamellar vesicles prepared by extrusion," Biophys. J. 64, 443-453 (1993).
[Crossref] [PubMed]

Frisken, B. J.

P. J. Patty and B. J. Frisken, "The pressure-dependence of the size of extruded vesicles," Biophys. J. 85, 996-1004 (2003).
[Crossref] [PubMed]

B. J. Frisken, "Revisiting the method of cumulants for analysis dynamic light scattering data," J. Appl. Opt. 40, 4087-4091 (2001).
[Crossref]

B. J. Frisken, C. Asman, and P. J. Patty, "Studies of vesicle extrusion," Langmuir 16, 928-933 (2000).
[Crossref]

D. G. Hunter and B. J. Frisken, "The effects of lipid composition and extrusion pressure and temperature on the properties of phospholipid vesicles," Biophys. J. 74, 2996-3000 (1998).
[Crossref] [PubMed]

Gawrisch, K.

A. J. Jin, D. Huster, and K. Gawrisch, "Light scattering characterization of extruded lipid vesicles," Eur. Biophys. J. 28, 187-199 (1999).
[Crossref] [PubMed]

Hallett, F. R.

J. Pencer and F. R. Hallett, "Effects of vesicle size and shape on static and dynamic light scattering measurements," Langmuir 19, 7488-7497 (2003).
[Crossref]

F. R. Hallett, J. Watton, and P. Krygsman, "Vesicle sizing-number distribution by dynamic light scattering," Biophys. J. 59, 357-362 (1991).
[Crossref] [PubMed]

F. R. Hallett, T. Craig, J. Marsh, and B. Nickel, "Particle size analysis: number distributions by dynamic light scattering," Can. J. Spectrosc. 34, 63-70 (1989).

Hanus, L. H.

L. H. Hanus and H. J. Ploehn, "Conversion of intensity-average photon correlation spectroscopy measurements to number-average particles size distributions. 1. Theoretical development," Langmuir 15, 3091-3100 (1999).
[Crossref]

Hope, M. J.

L. D. Mayer, M. J. Hope, and P. R. Cullis, "Vesicles of variable sizes produced by a rapid extrusion procedure," Biochim. Biophys. Acta 858, 161-168 (1986).
[Crossref] [PubMed]

Horne, D. S.

D. S. Horne, "Determination of the size distribution of bovine casein micelles using photon correlation spectroscopy," J. Colloid Interface Sci. 98, 537-548 (1984).
[Crossref]

Hunter, D. G.

D. G. Hunter and B. J. Frisken, "The effects of lipid composition and extrusion pressure and temperature on the properties of phospholipid vesicles," Biophys. J. 74, 2996-3000 (1998).
[Crossref] [PubMed]

Huster, D.

A. J. Jin, D. Huster, and K. Gawrisch, "Light scattering characterization of extruded lipid vesicles," Eur. Biophys. J. 28, 187-199 (1999).
[Crossref] [PubMed]

Jin, A. J.

A. J. Jin, D. Huster, and K. Gawrisch, "Light scattering characterization of extruded lipid vesicles," Eur. Biophys. J. 28, 187-199 (1999).
[Crossref] [PubMed]

Karlsson, G.

M. Almgren, K. Edwards, and G. Karlsson, "Cryotransmission electron microscopy of liposomes and related structures," Colloid. Surf. A 174, 3-21 (2000).
[Crossref]

Kölchens, S.

S. Kölchens, V. Ramaswami, J. Birgenheier, L. Nett, and D. F. O'Brien, "Quasi-elastic light scattering determination of the size distribution of extruded vesicles," Chem. Phys. Lipids 65, 1-10 (1993).
[Crossref] [PubMed]

Koppel, D. E.

D. E. Koppel, "Analysis of macromolecular polydispersity in intensity autocorrelation spectroscopy: the method of cumulants," J. Chem. Phys. 57, 4814-4820 (1972).
[Crossref]

Korgel, B. A.

B. A. Korgel, J. H. van Zanten, and H. G. Monbouquette, "Vesicle size distribution measured by field-flow-fractionation coupled with multiangle light scattering," Biophys. J. 74, 3264-3272 (1998).
[Crossref] [PubMed]

Krygsman, P.

F. R. Hallett, J. Watton, and P. Krygsman, "Vesicle sizing-number distribution by dynamic light scattering," Biophys. J. 59, 357-362 (1991).
[Crossref] [PubMed]

Madden, T. D.

B. Mui, P. R. Cullis, E. Evans, and T. D. Madden, "Osmotic properties of large unilamellar vesicles prepared by extrusion," Biophys. J. 64, 443-453 (1993).
[Crossref] [PubMed]

Marsh, J.

F. R. Hallett, T. Craig, J. Marsh, and B. Nickel, "Particle size analysis: number distributions by dynamic light scattering," Can. J. Spectrosc. 34, 63-70 (1989).

Mayer, L. D.

L. D. Mayer, M. J. Hope, and P. R. Cullis, "Vesicles of variable sizes produced by a rapid extrusion procedure," Biochim. Biophys. Acta 858, 161-168 (1986).
[Crossref] [PubMed]

Merklin, J. F.

Monbouquette, H. G.

B. A. Korgel, J. H. van Zanten, and H. G. Monbouquette, "Vesicle size distribution measured by field-flow-fractionation coupled with multiangle light scattering," Biophys. J. 74, 3264-3272 (1998).
[Crossref] [PubMed]

J. H. van Zanten and H. G. Monbouquette, "Phosphatidylcholine vesicle diameter, molecular weight and wall thickness determined by static light-scattering," J. Colloid Interface Sci. 165, 512-518 (1994).
[Crossref]

J. H. van Zanten and H. G. Monbouquette, "Characterization of vesicles by classical light scattering," J. Colloid Interface Sci. 146, 330-336 (1991).
[Crossref]

Mui, B.

B. Mui, P. R. Cullis, E. Evans, and T. D. Madden, "Osmotic properties of large unilamellar vesicles prepared by extrusion," Biophys. J. 64, 443-453 (1993).
[Crossref] [PubMed]

Nett, L.

S. Kölchens, V. Ramaswami, J. Birgenheier, L. Nett, and D. F. O'Brien, "Quasi-elastic light scattering determination of the size distribution of extruded vesicles," Chem. Phys. Lipids 65, 1-10 (1993).
[Crossref] [PubMed]

Nickel, B.

F. R. Hallett, T. Craig, J. Marsh, and B. Nickel, "Particle size analysis: number distributions by dynamic light scattering," Can. J. Spectrosc. 34, 63-70 (1989).

O'Brien, D. F.

S. Kölchens, V. Ramaswami, J. Birgenheier, L. Nett, and D. F. O'Brien, "Quasi-elastic light scattering determination of the size distribution of extruded vesicles," Chem. Phys. Lipids 65, 1-10 (1993).
[Crossref] [PubMed]

Patty, P. J.

P. J. Patty and B. J. Frisken, "The pressure-dependence of the size of extruded vesicles," Biophys. J. 85, 996-1004 (2003).
[Crossref] [PubMed]

B. J. Frisken, C. Asman, and P. J. Patty, "Studies of vesicle extrusion," Langmuir 16, 928-933 (2000).
[Crossref]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Robert E. Krieger, 1990).

Pencer, J.

J. Pencer and F. R. Hallett, "Effects of vesicle size and shape on static and dynamic light scattering measurements," Langmuir 19, 7488-7497 (2003).
[Crossref]

Ploehn, H. J.

L. H. Hanus and H. J. Ploehn, "Conversion of intensity-average photon correlation spectroscopy measurements to number-average particles size distributions. 1. Theoretical development," Langmuir 15, 3091-3100 (1999).
[Crossref]

Provencher, S.

S. Provencher, "Contin: a general purpose constrained regularization program for inverting noise linear algebraic and integral equations," Comp. Phys. Commun. 27, 229-242 (1982).
[Crossref]

S. Provencher, "A constrained regularization method for inverting data represented by linear algebraic or integral equations," Comp. Phys. Commun. 27, 213-227 (1982).
[Crossref]

Ramaswami, V.

S. Kölchens, V. Ramaswami, J. Birgenheier, L. Nett, and D. F. O'Brien, "Quasi-elastic light scattering determination of the size distribution of extruded vesicles," Chem. Phys. Lipids 65, 1-10 (1993).
[Crossref] [PubMed]

Scrivner, S. M.

Selser, J. C.

J. C. Selser, "Letter: a light scattering method of measuring membrane vesicle-number average size and size dispersion," Biophys. J. 16, 847-848 (1976).
[Crossref] [PubMed]

J. C. Selser and R. J. Baskin, "A light scattering characterization of membrane vesicles," Biophys. J. 16, 337-356 (1976).
[Crossref] [PubMed]

Siegel, D. P.

Y. Talmon, J. L. Burns, M. H. Chesnut, and D. P. Siegel, "Time-resolved cryotransmission electron microscopy," J. Electron Microsc. Tech. 14, 6-12 (1990).
[Crossref] [PubMed]

Sorensen, C. M.

Stepánek, P.

P. Stepánek, "Data analysis in dynamic light scattering," in Dynamic Light Scattering: the Method and Some Applications, W.Brown, ed. (Oxford U. Press, 1993), pp. 177-241.

Talmon, Y.

Y. Talmon, J. L. Burns, M. H. Chesnut, and D. P. Siegel, "Time-resolved cryotransmission electron microscopy," J. Electron Microsc. Tech. 14, 6-12 (1990).
[Crossref] [PubMed]

Taylor, T. W.

Thomas, J. C.

G. Bryant, C. Abeynayake, and J. C. Thomas, "Improve particle size distribution measurements using multiangle dynamic light scattering. 2. Refinements and applications," Langmuir 12, 6224-6228 (1996).
[Crossref]

J. C. Thomas, "The determination of log normal particle size distributions by dynamic light scattering," J. Colloid Interface Sci. 117, 187-192 (1987).
[Crossref]

van Zanten, J. H.

B. A. Korgel, J. H. van Zanten, and H. G. Monbouquette, "Vesicle size distribution measured by field-flow-fractionation coupled with multiangle light scattering," Biophys. J. 74, 3264-3272 (1998).
[Crossref] [PubMed]

J. H. van Zanten and H. G. Monbouquette, "Phosphatidylcholine vesicle diameter, molecular weight and wall thickness determined by static light-scattering," J. Colloid Interface Sci. 165, 512-518 (1994).
[Crossref]

J. H. van Zanten and H. G. Monbouquette, "Characterization of vesicles by classical light scattering," J. Colloid Interface Sci. 146, 330-336 (1991).
[Crossref]

Watton, J.

F. R. Hallett, J. Watton, and P. Krygsman, "Vesicle sizing-number distribution by dynamic light scattering," Biophys. J. 59, 357-362 (1991).
[Crossref] [PubMed]

Appl. Opt. (1)

Biochim. Biophys. Acta (1)

L. D. Mayer, M. J. Hope, and P. R. Cullis, "Vesicles of variable sizes produced by a rapid extrusion procedure," Biochim. Biophys. Acta 858, 161-168 (1986).
[Crossref] [PubMed]

Biophys. J. (7)

B. Mui, P. R. Cullis, E. Evans, and T. D. Madden, "Osmotic properties of large unilamellar vesicles prepared by extrusion," Biophys. J. 64, 443-453 (1993).
[Crossref] [PubMed]

J. C. Selser and R. J. Baskin, "A light scattering characterization of membrane vesicles," Biophys. J. 16, 337-356 (1976).
[Crossref] [PubMed]

F. R. Hallett, J. Watton, and P. Krygsman, "Vesicle sizing-number distribution by dynamic light scattering," Biophys. J. 59, 357-362 (1991).
[Crossref] [PubMed]

P. J. Patty and B. J. Frisken, "The pressure-dependence of the size of extruded vesicles," Biophys. J. 85, 996-1004 (2003).
[Crossref] [PubMed]

J. C. Selser, "Letter: a light scattering method of measuring membrane vesicle-number average size and size dispersion," Biophys. J. 16, 847-848 (1976).
[Crossref] [PubMed]

B. A. Korgel, J. H. van Zanten, and H. G. Monbouquette, "Vesicle size distribution measured by field-flow-fractionation coupled with multiangle light scattering," Biophys. J. 74, 3264-3272 (1998).
[Crossref] [PubMed]

D. G. Hunter and B. J. Frisken, "The effects of lipid composition and extrusion pressure and temperature on the properties of phospholipid vesicles," Biophys. J. 74, 2996-3000 (1998).
[Crossref] [PubMed]

Can. J. Spectrosc. (1)

F. R. Hallett, T. Craig, J. Marsh, and B. Nickel, "Particle size analysis: number distributions by dynamic light scattering," Can. J. Spectrosc. 34, 63-70 (1989).

Chem. Phys. Lipids (1)

S. Kölchens, V. Ramaswami, J. Birgenheier, L. Nett, and D. F. O'Brien, "Quasi-elastic light scattering determination of the size distribution of extruded vesicles," Chem. Phys. Lipids 65, 1-10 (1993).
[Crossref] [PubMed]

Colloid. Surf. A (1)

M. Almgren, K. Edwards, and G. Karlsson, "Cryotransmission electron microscopy of liposomes and related structures," Colloid. Surf. A 174, 3-21 (2000).
[Crossref]

Comp. Phys. Commun. (2)

S. Provencher, "Contin: a general purpose constrained regularization program for inverting noise linear algebraic and integral equations," Comp. Phys. Commun. 27, 229-242 (1982).
[Crossref]

S. Provencher, "A constrained regularization method for inverting data represented by linear algebraic or integral equations," Comp. Phys. Commun. 27, 213-227 (1982).
[Crossref]

Eur. Biophys. J. (1)

A. J. Jin, D. Huster, and K. Gawrisch, "Light scattering characterization of extruded lipid vesicles," Eur. Biophys. J. 28, 187-199 (1999).
[Crossref] [PubMed]

J. Appl. Opt. (1)

B. J. Frisken, "Revisiting the method of cumulants for analysis dynamic light scattering data," J. Appl. Opt. 40, 4087-4091 (2001).
[Crossref]

J. Chem. Phys. (2)

D. E. Koppel, "Analysis of macromolecular polydispersity in intensity autocorrelation spectroscopy: the method of cumulants," J. Chem. Phys. 57, 4814-4820 (1972).
[Crossref]

C. B. Bargeron, "Measurements of continuous distribution of spherical particles by intensity correlation spectroscopy: analysis by cumulants," J. Chem. Phys. 61, 2134-2138 (1974).
[Crossref]

J. Colloid Interface Sci. (4)

D. S. Horne, "Determination of the size distribution of bovine casein micelles using photon correlation spectroscopy," J. Colloid Interface Sci. 98, 537-548 (1984).
[Crossref]

J. C. Thomas, "The determination of log normal particle size distributions by dynamic light scattering," J. Colloid Interface Sci. 117, 187-192 (1987).
[Crossref]

J. H. van Zanten and H. G. Monbouquette, "Characterization of vesicles by classical light scattering," J. Colloid Interface Sci. 146, 330-336 (1991).
[Crossref]

J. H. van Zanten and H. G. Monbouquette, "Phosphatidylcholine vesicle diameter, molecular weight and wall thickness determined by static light-scattering," J. Colloid Interface Sci. 165, 512-518 (1994).
[Crossref]

J. Electron Microsc. Tech. (1)

Y. Talmon, J. L. Burns, M. H. Chesnut, and D. P. Siegel, "Time-resolved cryotransmission electron microscopy," J. Electron Microsc. Tech. 14, 6-12 (1990).
[Crossref] [PubMed]

Langmuir (4)

B. J. Frisken, C. Asman, and P. J. Patty, "Studies of vesicle extrusion," Langmuir 16, 928-933 (2000).
[Crossref]

G. Bryant, C. Abeynayake, and J. C. Thomas, "Improve particle size distribution measurements using multiangle dynamic light scattering. 2. Refinements and applications," Langmuir 12, 6224-6228 (1996).
[Crossref]

L. H. Hanus and H. J. Ploehn, "Conversion of intensity-average photon correlation spectroscopy measurements to number-average particles size distributions. 1. Theoretical development," Langmuir 15, 3091-3100 (1999).
[Crossref]

J. Pencer and F. R. Hallett, "Effects of vesicle size and shape on static and dynamic light scattering measurements," Langmuir 19, 7488-7497 (2003).
[Crossref]

Other (2)

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Robert E. Krieger, 1990).

P. Stepánek, "Data analysis in dynamic light scattering," in Dynamic Light Scattering: the Method and Some Applications, W.Brown, ed. (Oxford U. Press, 1993), pp. 177-241.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Hydrodynamic radius normalized by the radius measured at 20° and (b) polydispersity of 50 and 100   nm vesicles as a function of q. The results were determined by using g ( 1 ) ( τ ) , consisting of either a decay rate distribution [Eq. (6)] or a moments-based analysis [Eq. (9)].

Fig. 2
Fig. 2

(a) Intensity-weighted mean radius R i and (b) polydispersity σ Ri of 50   nm vesicles as a function of q. The results were determined by using g ( 1 ) ( τ ) , expressed in terms of the intensity-weighted radius distribution G i ( R ) [Eq. (10)], in which Gaussian and Schulz distributions were used for G i ( R ) . For comparison, the results for 50   nm vesicles from Fig. 1 are also shown.

Fig. 3
Fig. 3

(a) Intensity-weighted mean radius R i and (b) polydispersity σ R i of 100   nm vesicles as a function of q. The results were determined by using g ( 1 ) ( τ ) , expressed in terms of the intensity-weighted radius distribution G i ( R ) [Eq. (10)], in which Gaussian and Schulz distributions were used for G i ( R ) . For comparison, the results for 100   nm vesicles from Fig. 1 are also shown.

Fig. 4
Fig. 4

(a) Number-weighted mean radius R n and (b) polydispersity σ R n of 50   nm vesicles as a function of q. The results were determined by using g ( 1 ) ( τ ) expressed in terms of the number-weighted radius distribution G n ( R ) [Eq. (12)], in which Gaussian and Schulz distribution were used for G n ( R ) . For comparison, R n and σ R n , calculated using Eq. (13) and fit results for R i and σ R i as shown in Fig. 2, are also shown. The error bars represent the standard deviation of the mean value from five measurements.

Fig. 5
Fig. 5

(a) Number-weighted mean radius R n and (b) polydispersity σ R n of 100   nm vesicles as a function of q. The results were determined using g ( 1 ) ( τ ) expressed in terms of the number-weighted radius distribution G n ( R ) [Eq. (12)] in which Gaussian and Schulz distributions were used for G n ( R ) . For comparison, R n and σ R n , calculated using Eq. (13) and fit results for R i and σ R i shown in Fig. 2, are also shown. The error bars represent the standard deviation of the mean value from five measurements.

Fig. 6
Fig. 6

Values for (a) R n and (b) σ R n calculated as a function of σ R i of vesicles with R i values of 60   and   90   nm by using Eq. (13) for both Gaussian and Schulz distributions of vesicles.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

G ( R ) = ( 1 2 π s ) exp [ ( R ¯ R ) 2 2 s 2 ] ,
G ( R ) = ( m + 1 R ¯ ) m + 1 R m m ! exp [ R ( m + 1 ) R ¯ ] ,
g ( 2 ) ( τ ) = B + β [ g ( 1 ) ( τ ) ] 2 ,
g ( 1 ) ( τ ) = exp [ Γ τ ] ,
R h = k B T 6 πηD = k B T q 2 6 πηΓ ,
g ( 1 ) ( τ ) = 0 G ( Γ ) exp [ Γ τ ] d Γ ,
Γ ¯ = 0 Γ G ( Γ ) d Γ
s Γ       2 Γ ¯ 2 = 0 ( Γ Γ ¯ ) 2 Γ ¯ 2 G ( Γ ) d Γ .
g ( 1 ) ( τ ) = exp [ Γ ¯ τ ] ( 1 + μ 2 2 ! τ 2 μ 2 3 ! τ 3 + ) ,
g ( 1 ) ( τ ) = 0 G i ( R ) exp [ k B T q 2 6 π η R τ ] d R ,
F ( R ) = [ sin ( q R ) q R ] 2 ,
g ( 1 ) ( τ ) = 0 G n ( R ) R 4 F ( R ) exp [ ( k B T q 2 / 6 π η R ) τ ] d R 0 G n ( R ) R 4 F ( R ) d R .
G n ( R ) = A G i ( R ) R 4 F ( R ) ,
A = [ 0 G i ( R ) R 4 F ( R )  d R ] 1
R h = k B T q 2 6 πη 1 Γ ¯ = k B T q 2 6 πη 1 R 1 ¯ .
R h = 0 G n ( R ) R 4 F ( R ) d R 0 R 1 G n ( R ) R 4 F ( R ) d R = 0 G n ( R ) R 4 F ( R ) d R 0 G n ( R ) R 3 F ( R ) d R ,
σ R n           2 = 0 G n ( R ) R 4 F ( R ) d R 0 R 2 G n ( R ) F ( R ) d R [ 0 R 3 G n ( R ) F ( R ) d R ] 2 1.

Metrics