Abstract

All previous applications of diffusing-wave spectroscopy to aqueous foams have relied on the assumption that the electric field of the detected light is a Gaussian random variable and hence that the Siegert relation applies. We test this crucial assumption by simultaneous measurement of both second- and third-order temporal intensity correlations. We find that the electric field is Gaussian for typical experimental geometries equivalent to illumination and detection with a plane wave, both for backscattering and transmission through an optically thick slab. However, we find that the Gaussian character breaks down for point-in–point-out backscattering geometries in which the illumination spot size is not sufficiently large in comparison with the size of the intermittent rearrangement events.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Aubert, A. M. Kraynik, and P. B. Rand, "Aqueous foams," Sci. Am. 254, 74-82 (1989).
    [CrossRef]
  2. J. Stavans, "The evolution of cellular structures," Rep. Prog. Phys. 56, 733-789 (1993).
    [CrossRef]
  3. D. J. Durian and D. A. Weitz, "Foams," in Kirk-Othmer Encyclopedia of Chemical Technology, J.I.Kroschwitz, ed. (Wiley, 1994), Vol. 11, pp. 783-805.
  4. D. Weaire and S. Hutzler, The Physics of Foams (Clarendon, 1999).
  5. M. U. Vera, P.-A. Lemieux, and D. J. Durian, "Angular distribution of diffusely backscattered light," J. Opt. Soc. Am. A 14, 2800-2808 (1997).
    [CrossRef]
  6. M. U. Vera, A. Saint-Jalmes, and D. J. Durian, "Scattering optics of foam," Appl. Opt. 40, 4210-4214 (2001).
    [CrossRef]
  7. A. S. Gittings, R. Bandyopadhyay, and D. J. Durian, "Photon channelling in foams," Europhys. Lett. 65, 414-419 (2004).
    [CrossRef]
  8. M. Miri and H. Stark, "Persistent random walk in a honeycomb structure: light transport in foams," Phys. Rev. E 68, 031102/1-8 (2003).
    [CrossRef]
  9. M. F. Miri and H. Stark, "The role of liquid films for light transport in dry foams," Europhys. Lett. 65, 567-573 (2004).
    [CrossRef]
  10. D. A. Weitz and D. J. Pine, "Diffusing-wave spectroscopy," in Dynamic Light Scattering: the Method and Some Applications, W.Brown, ed. (Claredon, 1993); pp. 652-720.
  11. G. Maret, "Diffusing-wave spectroscopy," Curr. Op. Coll. I. Sci. 2, 251-257 (1997).
    [CrossRef]
  12. P.-A. Lemieux, M. U. Vera, and D. J. Durian, "Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering," Phys. Rev. E 57, 4498-4515 (1998).
    [CrossRef]
  13. B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).
  14. B. Chu, Laser Light Scattering, Basic Principles and Practice (Academic, 1991).
  15. D. A. Weitz and D. J. Pine, "Diffusing-wave spectroscopy," in Dynamic Light Scattering: the Method and Some Applications, W. Brown, ed. (Clarendon, 1993), pp. 652-720.
  16. D. J. Durian, D. A. Weitz, and D. J. Pine, "Multiple light-scattering probes of foam structure and dynamics," Science 252, 686-688 (1991).
    [CrossRef] [PubMed]
  17. D. J. Durian, D. A. Weitz, and D. J. Pine, "Scaling behavior in shaving cream," Phys. Rev. A 44, R7902-R5 (1991).
    [CrossRef] [PubMed]
  18. A. D. Gopal and D. J. Durian, "Fast thermal dynamics in aqueous foams," J. Opt. Soc. Am. A 14, 150-155 (1997).
    [CrossRef]
  19. J. C. Earnshaw and A. H. Jaafar, "Diffusing-wave spectroscopy of a flowing foam," Phys. Rev. E 49, 5408-5411 (1994).
    [CrossRef]
  20. A. D. Gopal and D. J. Durian, "Nonlinear bubble dynamics in a slowly driven foam," Phys. Rev. Lett. 75, 2610-2613 (1995).
    [CrossRef] [PubMed]
  21. S. Cohen-Addad and R. Hohler, "Bubble dynamics relaxation in aqueous foam probed by multispeckle diffusing-wave spectroscopy," Phys. Rev. Lett. 86, 4700-4703 (2001).
    [CrossRef] [PubMed]
  22. P. Hebraud, F. Lequeux, J. P. Munch, and D. J. Pine, "Yielding and rearrangements in disordered emulsions," Phys. Rev. Lett. 78, 4657-4660 (1997).
    [CrossRef]
  23. R. Hohler, S. Cohen-Addad, and H. Hoballah, "Periodic nonlinear bubble motion in aqeuous foam under oscillating shear strain," Phys. Rev. Lett. 79, 1154-1157 (1997).
    [CrossRef]
  24. P.-A. Lemieux and D. J. Durian, "Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions," J. Opt. Soc. Am. A 16, 1651-1664 (1999).
    [CrossRef]
  25. P.-A. Lemieux and D. J. Durian, "From avalanches to fluid flow: a continuous picture of grain dynamics down a heap," Phys. Rev. Lett. 85, 4273-4276 (2000).
    [CrossRef] [PubMed]
  26. P.-A. Lemieux and D. J. Durian, "Quasi-elastic light scattering for intermittent dynamics," Appl. Opt. 40, 3984-3994 (2001).
    [CrossRef]
  27. M. Corti and V. Degiorgio, "Intrinsic 3rd-order correlations in laser-light near threshold," Phys. Rev. A. 14, 1475-1498 (1976).
    [CrossRef]
  28. G. D. J. Phillies, "Bispectral analysis as a probe of quasi-elastic light-scattering intensity fluctuations," J. Chem. Phys. 72, 6123-6133 (1980).
    [CrossRef]
  29. L. Song and J. M. Schurr, "Three-time autocorrelation function of the power associated with a Gaussian random process," Chem. Phys. 155, 63-69 (1991).
    [CrossRef]
  30. D. J. Durian, "Penetration depth for diffusing-wave spectroscopy," Appl. Opt. 34, 7100-7105 (1995).
    [CrossRef] [PubMed]
  31. F. Morin, R. Borrega, M. Cloitre, and D. J. Durian, "Static and dynamic properties of highly turbid media determined by spatially resolved diffusive-wave spectroscopy," Appl. Opt. 41, 7294-7299 (2002).
    [CrossRef] [PubMed]
  32. L. E. Estes, L. M. Narducci, and R. A. Tuft, "Scattering of light from a rotating ground glass," J. Opt. Soc. Am. 61, 1301-1306 (1971).
    [CrossRef]
  33. P. N. Pusey, "Number fluctuations of interacting particles," J. Phys. A 12, 1805-1818 (1979).
    [CrossRef]
  34. L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer, "Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics," J. Phys. Condens. Matter 15, S257-S262 (2003).
    [CrossRef]
  35. P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich, and V. Trappe, "Heterogeneous dynamics of coarsening systems," Phys. Rev. Lett. 93, 115701/1-4 (2004).
    [CrossRef] [PubMed]
  36. P. K. Dixon and D. J. Durian, "Speckle visibility spectroscopy and variable granular fluidization," Phys. Rev. Lett. 90, 184302/1-4 (2003).
    [CrossRef] [PubMed]
  37. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, "Speckle-visibility spectroscopy: a tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093110/1-11 (2005).
    [CrossRef]

2005

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, "Speckle-visibility spectroscopy: a tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093110/1-11 (2005).
[CrossRef]

2004

P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich, and V. Trappe, "Heterogeneous dynamics of coarsening systems," Phys. Rev. Lett. 93, 115701/1-4 (2004).
[CrossRef] [PubMed]

A. S. Gittings, R. Bandyopadhyay, and D. J. Durian, "Photon channelling in foams," Europhys. Lett. 65, 414-419 (2004).
[CrossRef]

M. F. Miri and H. Stark, "The role of liquid films for light transport in dry foams," Europhys. Lett. 65, 567-573 (2004).
[CrossRef]

2003

M. Miri and H. Stark, "Persistent random walk in a honeycomb structure: light transport in foams," Phys. Rev. E 68, 031102/1-8 (2003).
[CrossRef]

P. K. Dixon and D. J. Durian, "Speckle visibility spectroscopy and variable granular fluidization," Phys. Rev. Lett. 90, 184302/1-4 (2003).
[CrossRef] [PubMed]

L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer, "Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics," J. Phys. Condens. Matter 15, S257-S262 (2003).
[CrossRef]

2002

2001

2000

P.-A. Lemieux and D. J. Durian, "From avalanches to fluid flow: a continuous picture of grain dynamics down a heap," Phys. Rev. Lett. 85, 4273-4276 (2000).
[CrossRef] [PubMed]

1999

1998

P.-A. Lemieux, M. U. Vera, and D. J. Durian, "Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering," Phys. Rev. E 57, 4498-4515 (1998).
[CrossRef]

1997

G. Maret, "Diffusing-wave spectroscopy," Curr. Op. Coll. I. Sci. 2, 251-257 (1997).
[CrossRef]

P. Hebraud, F. Lequeux, J. P. Munch, and D. J. Pine, "Yielding and rearrangements in disordered emulsions," Phys. Rev. Lett. 78, 4657-4660 (1997).
[CrossRef]

R. Hohler, S. Cohen-Addad, and H. Hoballah, "Periodic nonlinear bubble motion in aqeuous foam under oscillating shear strain," Phys. Rev. Lett. 79, 1154-1157 (1997).
[CrossRef]

A. D. Gopal and D. J. Durian, "Fast thermal dynamics in aqueous foams," J. Opt. Soc. Am. A 14, 150-155 (1997).
[CrossRef]

M. U. Vera, P.-A. Lemieux, and D. J. Durian, "Angular distribution of diffusely backscattered light," J. Opt. Soc. Am. A 14, 2800-2808 (1997).
[CrossRef]

1995

D. J. Durian, "Penetration depth for diffusing-wave spectroscopy," Appl. Opt. 34, 7100-7105 (1995).
[CrossRef] [PubMed]

A. D. Gopal and D. J. Durian, "Nonlinear bubble dynamics in a slowly driven foam," Phys. Rev. Lett. 75, 2610-2613 (1995).
[CrossRef] [PubMed]

1994

J. C. Earnshaw and A. H. Jaafar, "Diffusing-wave spectroscopy of a flowing foam," Phys. Rev. E 49, 5408-5411 (1994).
[CrossRef]

1993

J. Stavans, "The evolution of cellular structures," Rep. Prog. Phys. 56, 733-789 (1993).
[CrossRef]

1991

D. J. Durian, D. A. Weitz, and D. J. Pine, "Multiple light-scattering probes of foam structure and dynamics," Science 252, 686-688 (1991).
[CrossRef] [PubMed]

D. J. Durian, D. A. Weitz, and D. J. Pine, "Scaling behavior in shaving cream," Phys. Rev. A 44, R7902-R5 (1991).
[CrossRef] [PubMed]

L. Song and J. M. Schurr, "Three-time autocorrelation function of the power associated with a Gaussian random process," Chem. Phys. 155, 63-69 (1991).
[CrossRef]

1989

J. H. Aubert, A. M. Kraynik, and P. B. Rand, "Aqueous foams," Sci. Am. 254, 74-82 (1989).
[CrossRef]

1980

G. D. J. Phillies, "Bispectral analysis as a probe of quasi-elastic light-scattering intensity fluctuations," J. Chem. Phys. 72, 6123-6133 (1980).
[CrossRef]

1979

P. N. Pusey, "Number fluctuations of interacting particles," J. Phys. A 12, 1805-1818 (1979).
[CrossRef]

1976

M. Corti and V. Degiorgio, "Intrinsic 3rd-order correlations in laser-light near threshold," Phys. Rev. A. 14, 1475-1498 (1976).
[CrossRef]

1971

Aubert, J. H.

J. H. Aubert, A. M. Kraynik, and P. B. Rand, "Aqueous foams," Sci. Am. 254, 74-82 (1989).
[CrossRef]

Ballesta, P.

L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer, "Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics," J. Phys. Condens. Matter 15, S257-S262 (2003).
[CrossRef]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, "Speckle-visibility spectroscopy: a tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093110/1-11 (2005).
[CrossRef]

A. S. Gittings, R. Bandyopadhyay, and D. J. Durian, "Photon channelling in foams," Europhys. Lett. 65, 414-419 (2004).
[CrossRef]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).

Berthier, L.

P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich, and V. Trappe, "Heterogeneous dynamics of coarsening systems," Phys. Rev. Lett. 93, 115701/1-4 (2004).
[CrossRef] [PubMed]

Bissig, H.

P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich, and V. Trappe, "Heterogeneous dynamics of coarsening systems," Phys. Rev. Lett. 93, 115701/1-4 (2004).
[CrossRef] [PubMed]

L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer, "Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics," J. Phys. Condens. Matter 15, S257-S262 (2003).
[CrossRef]

Borrega, R.

Chu, B.

B. Chu, Laser Light Scattering, Basic Principles and Practice (Academic, 1991).

Cipelletti, L.

P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich, and V. Trappe, "Heterogeneous dynamics of coarsening systems," Phys. Rev. Lett. 93, 115701/1-4 (2004).
[CrossRef] [PubMed]

L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer, "Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics," J. Phys. Condens. Matter 15, S257-S262 (2003).
[CrossRef]

Cloitre, M.

Cohen-Addad, S.

S. Cohen-Addad and R. Hohler, "Bubble dynamics relaxation in aqueous foam probed by multispeckle diffusing-wave spectroscopy," Phys. Rev. Lett. 86, 4700-4703 (2001).
[CrossRef] [PubMed]

R. Hohler, S. Cohen-Addad, and H. Hoballah, "Periodic nonlinear bubble motion in aqeuous foam under oscillating shear strain," Phys. Rev. Lett. 79, 1154-1157 (1997).
[CrossRef]

Corti, M.

M. Corti and V. Degiorgio, "Intrinsic 3rd-order correlations in laser-light near threshold," Phys. Rev. A. 14, 1475-1498 (1976).
[CrossRef]

Degiorgio, V.

M. Corti and V. Degiorgio, "Intrinsic 3rd-order correlations in laser-light near threshold," Phys. Rev. A. 14, 1475-1498 (1976).
[CrossRef]

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, "Speckle-visibility spectroscopy: a tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093110/1-11 (2005).
[CrossRef]

P. K. Dixon and D. J. Durian, "Speckle visibility spectroscopy and variable granular fluidization," Phys. Rev. Lett. 90, 184302/1-4 (2003).
[CrossRef] [PubMed]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, "Speckle-visibility spectroscopy: a tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093110/1-11 (2005).
[CrossRef]

A. S. Gittings, R. Bandyopadhyay, and D. J. Durian, "Photon channelling in foams," Europhys. Lett. 65, 414-419 (2004).
[CrossRef]

P. K. Dixon and D. J. Durian, "Speckle visibility spectroscopy and variable granular fluidization," Phys. Rev. Lett. 90, 184302/1-4 (2003).
[CrossRef] [PubMed]

F. Morin, R. Borrega, M. Cloitre, and D. J. Durian, "Static and dynamic properties of highly turbid media determined by spatially resolved diffusive-wave spectroscopy," Appl. Opt. 41, 7294-7299 (2002).
[CrossRef] [PubMed]

M. U. Vera, A. Saint-Jalmes, and D. J. Durian, "Scattering optics of foam," Appl. Opt. 40, 4210-4214 (2001).
[CrossRef]

P.-A. Lemieux and D. J. Durian, "Quasi-elastic light scattering for intermittent dynamics," Appl. Opt. 40, 3984-3994 (2001).
[CrossRef]

P.-A. Lemieux and D. J. Durian, "From avalanches to fluid flow: a continuous picture of grain dynamics down a heap," Phys. Rev. Lett. 85, 4273-4276 (2000).
[CrossRef] [PubMed]

P.-A. Lemieux and D. J. Durian, "Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions," J. Opt. Soc. Am. A 16, 1651-1664 (1999).
[CrossRef]

P.-A. Lemieux, M. U. Vera, and D. J. Durian, "Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering," Phys. Rev. E 57, 4498-4515 (1998).
[CrossRef]

M. U. Vera, P.-A. Lemieux, and D. J. Durian, "Angular distribution of diffusely backscattered light," J. Opt. Soc. Am. A 14, 2800-2808 (1997).
[CrossRef]

A. D. Gopal and D. J. Durian, "Fast thermal dynamics in aqueous foams," J. Opt. Soc. Am. A 14, 150-155 (1997).
[CrossRef]

D. J. Durian, "Penetration depth for diffusing-wave spectroscopy," Appl. Opt. 34, 7100-7105 (1995).
[CrossRef] [PubMed]

A. D. Gopal and D. J. Durian, "Nonlinear bubble dynamics in a slowly driven foam," Phys. Rev. Lett. 75, 2610-2613 (1995).
[CrossRef] [PubMed]

D. J. Durian, D. A. Weitz, and D. J. Pine, "Multiple light-scattering probes of foam structure and dynamics," Science 252, 686-688 (1991).
[CrossRef] [PubMed]

D. J. Durian, D. A. Weitz, and D. J. Pine, "Scaling behavior in shaving cream," Phys. Rev. A 44, R7902-R5 (1991).
[CrossRef] [PubMed]

D. J. Durian and D. A. Weitz, "Foams," in Kirk-Othmer Encyclopedia of Chemical Technology, J.I.Kroschwitz, ed. (Wiley, 1994), Vol. 11, pp. 783-805.

Earnshaw, J. C.

J. C. Earnshaw and A. H. Jaafar, "Diffusing-wave spectroscopy of a flowing foam," Phys. Rev. E 49, 5408-5411 (1994).
[CrossRef]

Estes, L. E.

Garrahan, J. P.

P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich, and V. Trappe, "Heterogeneous dynamics of coarsening systems," Phys. Rev. Lett. 93, 115701/1-4 (2004).
[CrossRef] [PubMed]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, "Speckle-visibility spectroscopy: a tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093110/1-11 (2005).
[CrossRef]

A. S. Gittings, R. Bandyopadhyay, and D. J. Durian, "Photon channelling in foams," Europhys. Lett. 65, 414-419 (2004).
[CrossRef]

Gopal, A. D.

A. D. Gopal and D. J. Durian, "Fast thermal dynamics in aqueous foams," J. Opt. Soc. Am. A 14, 150-155 (1997).
[CrossRef]

A. D. Gopal and D. J. Durian, "Nonlinear bubble dynamics in a slowly driven foam," Phys. Rev. Lett. 75, 2610-2613 (1995).
[CrossRef] [PubMed]

Hebraud, P.

P. Hebraud, F. Lequeux, J. P. Munch, and D. J. Pine, "Yielding and rearrangements in disordered emulsions," Phys. Rev. Lett. 78, 4657-4660 (1997).
[CrossRef]

Hoballah, H.

R. Hohler, S. Cohen-Addad, and H. Hoballah, "Periodic nonlinear bubble motion in aqeuous foam under oscillating shear strain," Phys. Rev. Lett. 79, 1154-1157 (1997).
[CrossRef]

Hohler, R.

S. Cohen-Addad and R. Hohler, "Bubble dynamics relaxation in aqueous foam probed by multispeckle diffusing-wave spectroscopy," Phys. Rev. Lett. 86, 4700-4703 (2001).
[CrossRef] [PubMed]

R. Hohler, S. Cohen-Addad, and H. Hoballah, "Periodic nonlinear bubble motion in aqeuous foam under oscillating shear strain," Phys. Rev. Lett. 79, 1154-1157 (1997).
[CrossRef]

Hutzler, S.

D. Weaire and S. Hutzler, The Physics of Foams (Clarendon, 1999).

Jaafar, A. H.

J. C. Earnshaw and A. H. Jaafar, "Diffusing-wave spectroscopy of a flowing foam," Phys. Rev. E 49, 5408-5411 (1994).
[CrossRef]

Kraynik, A. M.

J. H. Aubert, A. M. Kraynik, and P. B. Rand, "Aqueous foams," Sci. Am. 254, 74-82 (1989).
[CrossRef]

Lemieux, P.-A.

P.-A. Lemieux and D. J. Durian, "Quasi-elastic light scattering for intermittent dynamics," Appl. Opt. 40, 3984-3994 (2001).
[CrossRef]

P.-A. Lemieux and D. J. Durian, "From avalanches to fluid flow: a continuous picture of grain dynamics down a heap," Phys. Rev. Lett. 85, 4273-4276 (2000).
[CrossRef] [PubMed]

P.-A. Lemieux and D. J. Durian, "Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions," J. Opt. Soc. Am. A 16, 1651-1664 (1999).
[CrossRef]

P.-A. Lemieux, M. U. Vera, and D. J. Durian, "Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering," Phys. Rev. E 57, 4498-4515 (1998).
[CrossRef]

M. U. Vera, P.-A. Lemieux, and D. J. Durian, "Angular distribution of diffusely backscattered light," J. Opt. Soc. Am. A 14, 2800-2808 (1997).
[CrossRef]

Lequeux, F.

P. Hebraud, F. Lequeux, J. P. Munch, and D. J. Pine, "Yielding and rearrangements in disordered emulsions," Phys. Rev. Lett. 78, 4657-4660 (1997).
[CrossRef]

Maret, G.

G. Maret, "Diffusing-wave spectroscopy," Curr. Op. Coll. I. Sci. 2, 251-257 (1997).
[CrossRef]

Mayer, P.

P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich, and V. Trappe, "Heterogeneous dynamics of coarsening systems," Phys. Rev. Lett. 93, 115701/1-4 (2004).
[CrossRef] [PubMed]

Mazoyer, S.

L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer, "Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics," J. Phys. Condens. Matter 15, S257-S262 (2003).
[CrossRef]

Miri, M.

M. Miri and H. Stark, "Persistent random walk in a honeycomb structure: light transport in foams," Phys. Rev. E 68, 031102/1-8 (2003).
[CrossRef]

Miri, M. F.

M. F. Miri and H. Stark, "The role of liquid films for light transport in dry foams," Europhys. Lett. 65, 567-573 (2004).
[CrossRef]

Morin, F.

Munch, J. P.

P. Hebraud, F. Lequeux, J. P. Munch, and D. J. Pine, "Yielding and rearrangements in disordered emulsions," Phys. Rev. Lett. 78, 4657-4660 (1997).
[CrossRef]

Narducci, L. M.

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).

Phillies, G. D. J.

G. D. J. Phillies, "Bispectral analysis as a probe of quasi-elastic light-scattering intensity fluctuations," J. Chem. Phys. 72, 6123-6133 (1980).
[CrossRef]

Pine, D. J.

P. Hebraud, F. Lequeux, J. P. Munch, and D. J. Pine, "Yielding and rearrangements in disordered emulsions," Phys. Rev. Lett. 78, 4657-4660 (1997).
[CrossRef]

D. J. Durian, D. A. Weitz, and D. J. Pine, "Scaling behavior in shaving cream," Phys. Rev. A 44, R7902-R5 (1991).
[CrossRef] [PubMed]

D. J. Durian, D. A. Weitz, and D. J. Pine, "Multiple light-scattering probes of foam structure and dynamics," Science 252, 686-688 (1991).
[CrossRef] [PubMed]

D. A. Weitz and D. J. Pine, "Diffusing-wave spectroscopy," in Dynamic Light Scattering: the Method and Some Applications, W.Brown, ed. (Claredon, 1993); pp. 652-720.

D. A. Weitz and D. J. Pine, "Diffusing-wave spectroscopy," in Dynamic Light Scattering: the Method and Some Applications, W. Brown, ed. (Clarendon, 1993), pp. 652-720.

Pusey, P. N.

P. N. Pusey, "Number fluctuations of interacting particles," J. Phys. A 12, 1805-1818 (1979).
[CrossRef]

Rand, P. B.

J. H. Aubert, A. M. Kraynik, and P. B. Rand, "Aqueous foams," Sci. Am. 254, 74-82 (1989).
[CrossRef]

Saint-Jalmes, A.

Schurr, J. M.

L. Song and J. M. Schurr, "Three-time autocorrelation function of the power associated with a Gaussian random process," Chem. Phys. 155, 63-69 (1991).
[CrossRef]

Sollich, P.

P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich, and V. Trappe, "Heterogeneous dynamics of coarsening systems," Phys. Rev. Lett. 93, 115701/1-4 (2004).
[CrossRef] [PubMed]

Song, L.

L. Song and J. M. Schurr, "Three-time autocorrelation function of the power associated with a Gaussian random process," Chem. Phys. 155, 63-69 (1991).
[CrossRef]

Stark, H.

M. F. Miri and H. Stark, "The role of liquid films for light transport in dry foams," Europhys. Lett. 65, 567-573 (2004).
[CrossRef]

M. Miri and H. Stark, "Persistent random walk in a honeycomb structure: light transport in foams," Phys. Rev. E 68, 031102/1-8 (2003).
[CrossRef]

Stavans, J.

J. Stavans, "The evolution of cellular structures," Rep. Prog. Phys. 56, 733-789 (1993).
[CrossRef]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, "Speckle-visibility spectroscopy: a tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093110/1-11 (2005).
[CrossRef]

Trappe, V.

P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich, and V. Trappe, "Heterogeneous dynamics of coarsening systems," Phys. Rev. Lett. 93, 115701/1-4 (2004).
[CrossRef] [PubMed]

L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer, "Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics," J. Phys. Condens. Matter 15, S257-S262 (2003).
[CrossRef]

Tuft, R. A.

Vera, M. U.

M. U. Vera, A. Saint-Jalmes, and D. J. Durian, "Scattering optics of foam," Appl. Opt. 40, 4210-4214 (2001).
[CrossRef]

P.-A. Lemieux, M. U. Vera, and D. J. Durian, "Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering," Phys. Rev. E 57, 4498-4515 (1998).
[CrossRef]

M. U. Vera, P.-A. Lemieux, and D. J. Durian, "Angular distribution of diffusely backscattered light," J. Opt. Soc. Am. A 14, 2800-2808 (1997).
[CrossRef]

Weaire, D.

D. Weaire and S. Hutzler, The Physics of Foams (Clarendon, 1999).

Weitz, D. A.

D. J. Durian, D. A. Weitz, and D. J. Pine, "Scaling behavior in shaving cream," Phys. Rev. A 44, R7902-R5 (1991).
[CrossRef] [PubMed]

D. J. Durian, D. A. Weitz, and D. J. Pine, "Multiple light-scattering probes of foam structure and dynamics," Science 252, 686-688 (1991).
[CrossRef] [PubMed]

D. A. Weitz and D. J. Pine, "Diffusing-wave spectroscopy," in Dynamic Light Scattering: the Method and Some Applications, W.Brown, ed. (Claredon, 1993); pp. 652-720.

D. A. Weitz and D. J. Pine, "Diffusing-wave spectroscopy," in Dynamic Light Scattering: the Method and Some Applications, W. Brown, ed. (Clarendon, 1993), pp. 652-720.

D. J. Durian and D. A. Weitz, "Foams," in Kirk-Othmer Encyclopedia of Chemical Technology, J.I.Kroschwitz, ed. (Wiley, 1994), Vol. 11, pp. 783-805.

Appl. Opt.

Chem. Phys.

L. Song and J. M. Schurr, "Three-time autocorrelation function of the power associated with a Gaussian random process," Chem. Phys. 155, 63-69 (1991).
[CrossRef]

Curr. Op. Coll. I. Sci.

G. Maret, "Diffusing-wave spectroscopy," Curr. Op. Coll. I. Sci. 2, 251-257 (1997).
[CrossRef]

Europhys. Lett.

A. S. Gittings, R. Bandyopadhyay, and D. J. Durian, "Photon channelling in foams," Europhys. Lett. 65, 414-419 (2004).
[CrossRef]

M. F. Miri and H. Stark, "The role of liquid films for light transport in dry foams," Europhys. Lett. 65, 567-573 (2004).
[CrossRef]

J. Chem. Phys.

G. D. J. Phillies, "Bispectral analysis as a probe of quasi-elastic light-scattering intensity fluctuations," J. Chem. Phys. 72, 6123-6133 (1980).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. A

P. N. Pusey, "Number fluctuations of interacting particles," J. Phys. A 12, 1805-1818 (1979).
[CrossRef]

J. Phys. Condens. Matter

L. Cipelletti, H. Bissig, V. Trappe, P. Ballesta, and S. Mazoyer, "Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics," J. Phys. Condens. Matter 15, S257-S262 (2003).
[CrossRef]

Phys. Rev. A

D. J. Durian, D. A. Weitz, and D. J. Pine, "Scaling behavior in shaving cream," Phys. Rev. A 44, R7902-R5 (1991).
[CrossRef] [PubMed]

Phys. Rev. A.

M. Corti and V. Degiorgio, "Intrinsic 3rd-order correlations in laser-light near threshold," Phys. Rev. A. 14, 1475-1498 (1976).
[CrossRef]

Phys. Rev. E

J. C. Earnshaw and A. H. Jaafar, "Diffusing-wave spectroscopy of a flowing foam," Phys. Rev. E 49, 5408-5411 (1994).
[CrossRef]

M. Miri and H. Stark, "Persistent random walk in a honeycomb structure: light transport in foams," Phys. Rev. E 68, 031102/1-8 (2003).
[CrossRef]

P.-A. Lemieux, M. U. Vera, and D. J. Durian, "Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering," Phys. Rev. E 57, 4498-4515 (1998).
[CrossRef]

Phys. Rev. Lett.

A. D. Gopal and D. J. Durian, "Nonlinear bubble dynamics in a slowly driven foam," Phys. Rev. Lett. 75, 2610-2613 (1995).
[CrossRef] [PubMed]

S. Cohen-Addad and R. Hohler, "Bubble dynamics relaxation in aqueous foam probed by multispeckle diffusing-wave spectroscopy," Phys. Rev. Lett. 86, 4700-4703 (2001).
[CrossRef] [PubMed]

P. Hebraud, F. Lequeux, J. P. Munch, and D. J. Pine, "Yielding and rearrangements in disordered emulsions," Phys. Rev. Lett. 78, 4657-4660 (1997).
[CrossRef]

R. Hohler, S. Cohen-Addad, and H. Hoballah, "Periodic nonlinear bubble motion in aqeuous foam under oscillating shear strain," Phys. Rev. Lett. 79, 1154-1157 (1997).
[CrossRef]

P.-A. Lemieux and D. J. Durian, "From avalanches to fluid flow: a continuous picture of grain dynamics down a heap," Phys. Rev. Lett. 85, 4273-4276 (2000).
[CrossRef] [PubMed]

P. Mayer, H. Bissig, L. Berthier, L. Cipelletti, J. P. Garrahan, P. Sollich, and V. Trappe, "Heterogeneous dynamics of coarsening systems," Phys. Rev. Lett. 93, 115701/1-4 (2004).
[CrossRef] [PubMed]

P. K. Dixon and D. J. Durian, "Speckle visibility spectroscopy and variable granular fluidization," Phys. Rev. Lett. 90, 184302/1-4 (2003).
[CrossRef] [PubMed]

Rep. Prog. Phys.

J. Stavans, "The evolution of cellular structures," Rep. Prog. Phys. 56, 733-789 (1993).
[CrossRef]

Rev. Sci. Instrum.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, "Speckle-visibility spectroscopy: a tool to study time-varying dynamics," Rev. Sci. Instrum. 76, 093110/1-11 (2005).
[CrossRef]

Sci. Am.

J. H. Aubert, A. M. Kraynik, and P. B. Rand, "Aqueous foams," Sci. Am. 254, 74-82 (1989).
[CrossRef]

Science

D. J. Durian, D. A. Weitz, and D. J. Pine, "Multiple light-scattering probes of foam structure and dynamics," Science 252, 686-688 (1991).
[CrossRef] [PubMed]

Other

D. J. Durian and D. A. Weitz, "Foams," in Kirk-Othmer Encyclopedia of Chemical Technology, J.I.Kroschwitz, ed. (Wiley, 1994), Vol. 11, pp. 783-805.

D. Weaire and S. Hutzler, The Physics of Foams (Clarendon, 1999).

B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).

B. Chu, Laser Light Scattering, Basic Principles and Practice (Academic, 1991).

D. A. Weitz and D. J. Pine, "Diffusing-wave spectroscopy," in Dynamic Light Scattering: the Method and Some Applications, W. Brown, ed. (Clarendon, 1993), pp. 652-720.

D. A. Weitz and D. J. Pine, "Diffusing-wave spectroscopy," in Dynamic Light Scattering: the Method and Some Applications, W.Brown, ed. (Claredon, 1993); pp. 652-720.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Two- and three-time intensity correlation functions for light backscattered from a colloidal suspension of polystyrene particles with a point-in–point-out geometry. Data are shown by symbols, while the Gaussian predictions based on autocorrelation data are shown by solid curves. The separation distance between the centers of the illumination and detection spots is given by ρ in units of the transport mean free path, l * , as labeled. The fixed delay is T = 0.410 , as marked by an arrow.

Fig. 2
Fig. 2

(Color online) Two- and three-time intensity correlation functions for light transmitted through foam with a plane-in–plane-out equivalent geometry. Data are shown by symbols, while the Gaussian predictions based on autocorrelation data are shown by solid curves. The fixed delay time T is different for each of the six runs, as labeled.

Fig. 3
Fig. 3

(Color online) Two- and three-time intensity correlation functions for light backscattered from foam with a plane-in–plane-out equivalent geometry. Data are shown by symbols, while the Gaussian predictions based on autocorrelation data are shown by solid curves. The fixed delay time T is different for each of the six runs, as labeled.

Fig. 4
Fig. 4

(Color online) Two- and three-time intensity correlation functions for light backscattered from a foam with a point-in–point-out geometry. Data are shown by symbols, while the Gaussian predictions based on autocorrelation data are shown by solid curves. The separation distance between the centers of the illumination and detection spots is given by ρ in units of the transport mean free path, l * , as labeled. The fixed delay is T = 52.4   ms , as marked by an arrow.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( τ ) = I ( 0 ) I ( τ ) / I 2 .
g ( 2 ) ( τ ) = 1 + β | E ( 0 ) E * ( τ ) | 2 | E E * | 2
= 1 + β | γ ( τ ) | 2 ,
g ( 2 ) ( τ ) = n ( 0 ) n ( τ ) / n 2 .
g ( 3 ) ( τ , τ + T ) = I ( 0 ) I ( τ ) ( τ + T ) I 3 .
g ^ ( 3 ) ( τ , τ + T ) = n ( 0 ) n ( τ ) n ( τ + T ) n A n B ,
g ( 3 ) ( τ , τ + T ) = n B n A 2 g ^ ( 3 ) ( τ , τ + T ) = n ( 0 ) n ( τ ) n ( τ + T ) n 3
= R B τ s R A       2 g ^ ( 3 ) ( τ , τ + T ) .
g G       ( 3 ) ( τ , τ + T ) = 1 + β [ | γ ( τ ) | 2 + | γ ( T ) | 2 + | γ ( τ + T ) | 2 ] + 2 β 2  Re [ γ ( τ ) γ ( T ) γ ( τ + T ) ] .

Metrics