Abstract

The noninvasive optical technique of dynamic light scattering (DLS) is routinely used to characterize dilute and transparent submicrometer particle dispersions in laboratory environments. A variety of industrial and biological applications would, however, greatly benefit from on-line monitoring of dispersions under flowing conditions. We present a model experiment to study flowing dispersions of polystyrene latex particles of varying sizes under varying flow conditions by using a newly developed fiber-optic DLS probe. A modified correlation function proposed in an earlier study is applied to the analysis of extracting the size and velocity of laminar flowing particulate dispersions. The complementary technique of laser Doppler velocimetry is also used to measure the speed of moving particles to confirm the DLS findings.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chu, Laser Light Scattering: Basic Principles and Practice (Academic, 1991).
  2. D. P. Chowdhury, C. M. Sorensen, T. W. Taylor, J. F. Merklin, and T. W. Lester, "Application of photon correlation spectroscopy to flowing Brownian motion systems," Appl. Opt. 23, 4149-4154 (1984).
    [CrossRef] [PubMed]
  3. R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, "A fiber optic probe for monitoring protein aggregation, nucleation, and crystallization," J. Cryst. Growth 168, 216-226 (1996).
    [CrossRef]
  4. R. R. Ansari, "Ocular static and dynamic light scattering: a non-invasive diagnostic tool for eye research and clinical practice," J. Biomed. Opt. 9, 22-37 (2004).
    [CrossRef] [PubMed]

2004 (1)

R. R. Ansari, "Ocular static and dynamic light scattering: a non-invasive diagnostic tool for eye research and clinical practice," J. Biomed. Opt. 9, 22-37 (2004).
[CrossRef] [PubMed]

1996 (1)

R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, "A fiber optic probe for monitoring protein aggregation, nucleation, and crystallization," J. Cryst. Growth 168, 216-226 (1996).
[CrossRef]

1984 (1)

Ansari, R. R.

R. R. Ansari, "Ocular static and dynamic light scattering: a non-invasive diagnostic tool for eye research and clinical practice," J. Biomed. Opt. 9, 22-37 (2004).
[CrossRef] [PubMed]

R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, "A fiber optic probe for monitoring protein aggregation, nucleation, and crystallization," J. Cryst. Growth 168, 216-226 (1996).
[CrossRef]

Arabshahi, A.

R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, "A fiber optic probe for monitoring protein aggregation, nucleation, and crystallization," J. Cryst. Growth 168, 216-226 (1996).
[CrossRef]

Bray, T. L.

R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, "A fiber optic probe for monitoring protein aggregation, nucleation, and crystallization," J. Cryst. Growth 168, 216-226 (1996).
[CrossRef]

Chowdhury, D. P.

Chu, B.

B. Chu, Laser Light Scattering: Basic Principles and Practice (Academic, 1991).

DeLucas, L. J.

R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, "A fiber optic probe for monitoring protein aggregation, nucleation, and crystallization," J. Cryst. Growth 168, 216-226 (1996).
[CrossRef]

Lester, T. W.

Merklin, J. F.

Sorensen, C. M.

Suh, K. I.

R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, "A fiber optic probe for monitoring protein aggregation, nucleation, and crystallization," J. Cryst. Growth 168, 216-226 (1996).
[CrossRef]

Taylor, T. W.

Wilson, W. W.

R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, "A fiber optic probe for monitoring protein aggregation, nucleation, and crystallization," J. Cryst. Growth 168, 216-226 (1996).
[CrossRef]

Appl. Opt. (1)

J. Biomed. Opt. (1)

R. R. Ansari, "Ocular static and dynamic light scattering: a non-invasive diagnostic tool for eye research and clinical practice," J. Biomed. Opt. 9, 22-37 (2004).
[CrossRef] [PubMed]

J. Cryst. Growth (1)

R. R. Ansari, K. I. Suh, A. Arabshahi, W. W. Wilson, T. L. Bray, and L. J. DeLucas, "A fiber optic probe for monitoring protein aggregation, nucleation, and crystallization," J. Cryst. Growth 168, 216-226 (1996).
[CrossRef]

Other (1)

B. Chu, Laser Light Scattering: Basic Principles and Practice (Academic, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Experimental apparatus (right). Newly developed fiber-optic DLS probe (left).

Fig. 2
Fig. 2

TCFs of 250   nm particles with increasing velocity.

Fig. 3
Fig. 3

Modified TCF of 250   nm particles with increasing velocity.

Fig. 4
Fig. 4

Comparison of linear cumulant analysis with modified TCF methods of a 250 nm particulate dispersion in flow.

Fig. 5
Fig. 5

Particle size obtained from linear cumulant analysis as a function of particle velocity.

Fig. 6
Fig. 6

Particle sizes obtained from the Γ intercepts of modified TCFs as a function of velocity.

Fig. 7
Fig. 7

Comparison of DLS ( 50 , 100 , and 250 nm ) and LDV ( 490   nm ) measured velocities.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g 2 ( τ ) = A [ 1 + β exp ( 2 Γ τ ) ] ,
Γ = D T q 2 ,
q = 4 π n λ sin ( θ 2 ) ,
D T = K T 6 π η R ,
g 2 ( τ ) = A [ 1 + β exp ( 2 Γ τ ) exp ( ν 2 τ 2 w 2 ) ] ,
Y ( τ ) = 1 τ ln g 2 ( τ ) β = 2 Γ + ( v w ) 2 τ .

Metrics