Abstract

A novel scheme for the integration of diffractive optical elements onto silicon is presented. The processing is made in reverse order, meaning that the process of structuring the optical elements on the wafer precedes the silicon microstructuring. The first processing step on the wafer is the hot embossing of the optical microstructures into an amorphous fluorocarbon polymer spin coated on the wafer. The cured polymer forms a highly stable material with excellent optical properties. The remaining silicon processing is thus performed with the diffractive optical elements already in place. Two different diffractive structures were used in the development of the method—a (Fresnel) lens with a rather low f-number and a diffractive element producing a fan-out of a large number of paraxial beams.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ishikawa, J. Zhang, A. Tuantranont, V. M. Bright, and Y. C. Lee, "An integrated micro-optical system for VCSEL-to-fiber active alignment," Sens. Actuators A 103, 109-115 (2003).
    [CrossRef]
  2. A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, "Optical beam steering using MEMS-controllable microlens array," Sens. Actuators A 91, 363-372 (2001).
    [CrossRef]
  3. H. Toshiyoshi, G.-D. J. Su, J. LaCosse, and M. C. Wu, "A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process," J. Lightwave Technol. 21, 1700-1708 (2003).
    [CrossRef]
  4. L. R. Senesac, R. H. Farahi, J. L. Corbeil, D. D. Earl, S. Rajic, and P. G. Datskos, "Fabrication of integrated diffractive micro-optics for MEMS applications," in Optical Manufacturing and Testing IV, H. P. Stahl, eds., Proc. SPIE 4451, 295-305 (2001).
    [CrossRef]
  5. C.-H. Kim and Y.-K. Kim, "Micro x⁢y-stage using silicon on a glass substrate," J. Micromech. Microeng. 12, 103-107 (2002).
    [CrossRef]
  6. H. Toshiyoshi, G. J. Su, J. LaCosse, and M. C. Wu, "Micro optical scanners of photoresist reflow lens on MEMS x⁢y-stage," Seisan-Kenkyu 53, 91-95 (2001).
  7. M. T. Gale, "Replicated diffractive optics and micro-optics," Opt. Photon. News 14, 24-29 (2003).
    [CrossRef]
  8. Asahi Glass Company, "Technical information amorphous fluorocarbon polymer," 1997.
  9. J. Bengtsson, "Direct inclusion of the proximity effect in the calculation of kinoforms," Appl. Opt. 33, 4993-4996 (1994).
    [CrossRef] [PubMed]
  10. M. Larsson, M. Ekberg, F. Nikolajeff, and S. Hard, "Successive development optimization of resist kinoforms manufactured with direct-writing, electron-beam lithography," Appl. Opt. 33, 1176-1179 (1994).
    [CrossRef] [PubMed]
  11. K. W. Oh, A. Han, S. Bhansali, and C. H. Ahn, "A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble microsystems," J. Micromech. Microeng. 12, 187-191 (2002).
    [CrossRef]

2003

K. Ishikawa, J. Zhang, A. Tuantranont, V. M. Bright, and Y. C. Lee, "An integrated micro-optical system for VCSEL-to-fiber active alignment," Sens. Actuators A 103, 109-115 (2003).
[CrossRef]

H. Toshiyoshi, G.-D. J. Su, J. LaCosse, and M. C. Wu, "A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process," J. Lightwave Technol. 21, 1700-1708 (2003).
[CrossRef]

M. T. Gale, "Replicated diffractive optics and micro-optics," Opt. Photon. News 14, 24-29 (2003).
[CrossRef]

2002

C.-H. Kim and Y.-K. Kim, "Micro x⁢y-stage using silicon on a glass substrate," J. Micromech. Microeng. 12, 103-107 (2002).
[CrossRef]

K. W. Oh, A. Han, S. Bhansali, and C. H. Ahn, "A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble microsystems," J. Micromech. Microeng. 12, 187-191 (2002).
[CrossRef]

2001

H. Toshiyoshi, G. J. Su, J. LaCosse, and M. C. Wu, "Micro optical scanners of photoresist reflow lens on MEMS x⁢y-stage," Seisan-Kenkyu 53, 91-95 (2001).

L. R. Senesac, R. H. Farahi, J. L. Corbeil, D. D. Earl, S. Rajic, and P. G. Datskos, "Fabrication of integrated diffractive micro-optics for MEMS applications," in Optical Manufacturing and Testing IV, H. P. Stahl, eds., Proc. SPIE 4451, 295-305 (2001).
[CrossRef]

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, "Optical beam steering using MEMS-controllable microlens array," Sens. Actuators A 91, 363-372 (2001).
[CrossRef]

1994

Ahn, C. H.

K. W. Oh, A. Han, S. Bhansali, and C. H. Ahn, "A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble microsystems," J. Micromech. Microeng. 12, 187-191 (2002).
[CrossRef]

Bengtsson, J.

Bhansali, S.

K. W. Oh, A. Han, S. Bhansali, and C. H. Ahn, "A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble microsystems," J. Micromech. Microeng. 12, 187-191 (2002).
[CrossRef]

Bright, V. M.

K. Ishikawa, J. Zhang, A. Tuantranont, V. M. Bright, and Y. C. Lee, "An integrated micro-optical system for VCSEL-to-fiber active alignment," Sens. Actuators A 103, 109-115 (2003).
[CrossRef]

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, "Optical beam steering using MEMS-controllable microlens array," Sens. Actuators A 91, 363-372 (2001).
[CrossRef]

Corbeil, J. L.

L. R. Senesac, R. H. Farahi, J. L. Corbeil, D. D. Earl, S. Rajic, and P. G. Datskos, "Fabrication of integrated diffractive micro-optics for MEMS applications," in Optical Manufacturing and Testing IV, H. P. Stahl, eds., Proc. SPIE 4451, 295-305 (2001).
[CrossRef]

Datskos, P. G.

L. R. Senesac, R. H. Farahi, J. L. Corbeil, D. D. Earl, S. Rajic, and P. G. Datskos, "Fabrication of integrated diffractive micro-optics for MEMS applications," in Optical Manufacturing and Testing IV, H. P. Stahl, eds., Proc. SPIE 4451, 295-305 (2001).
[CrossRef]

Earl, D. D.

L. R. Senesac, R. H. Farahi, J. L. Corbeil, D. D. Earl, S. Rajic, and P. G. Datskos, "Fabrication of integrated diffractive micro-optics for MEMS applications," in Optical Manufacturing and Testing IV, H. P. Stahl, eds., Proc. SPIE 4451, 295-305 (2001).
[CrossRef]

Ekberg, M.

Farahi, R. H.

L. R. Senesac, R. H. Farahi, J. L. Corbeil, D. D. Earl, S. Rajic, and P. G. Datskos, "Fabrication of integrated diffractive micro-optics for MEMS applications," in Optical Manufacturing and Testing IV, H. P. Stahl, eds., Proc. SPIE 4451, 295-305 (2001).
[CrossRef]

Gale, M. T.

M. T. Gale, "Replicated diffractive optics and micro-optics," Opt. Photon. News 14, 24-29 (2003).
[CrossRef]

Han, A.

K. W. Oh, A. Han, S. Bhansali, and C. H. Ahn, "A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble microsystems," J. Micromech. Microeng. 12, 187-191 (2002).
[CrossRef]

Hard, S.

Ishikawa, K.

K. Ishikawa, J. Zhang, A. Tuantranont, V. M. Bright, and Y. C. Lee, "An integrated micro-optical system for VCSEL-to-fiber active alignment," Sens. Actuators A 103, 109-115 (2003).
[CrossRef]

Kim, C.-H.

C.-H. Kim and Y.-K. Kim, "Micro x⁢y-stage using silicon on a glass substrate," J. Micromech. Microeng. 12, 103-107 (2002).
[CrossRef]

Kim, Y.-K.

C.-H. Kim and Y.-K. Kim, "Micro x⁢y-stage using silicon on a glass substrate," J. Micromech. Microeng. 12, 103-107 (2002).
[CrossRef]

LaCosse, J.

H. Toshiyoshi, G.-D. J. Su, J. LaCosse, and M. C. Wu, "A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process," J. Lightwave Technol. 21, 1700-1708 (2003).
[CrossRef]

H. Toshiyoshi, G. J. Su, J. LaCosse, and M. C. Wu, "Micro optical scanners of photoresist reflow lens on MEMS x⁢y-stage," Seisan-Kenkyu 53, 91-95 (2001).

Larsson, M.

Lee, Y. C.

K. Ishikawa, J. Zhang, A. Tuantranont, V. M. Bright, and Y. C. Lee, "An integrated micro-optical system for VCSEL-to-fiber active alignment," Sens. Actuators A 103, 109-115 (2003).
[CrossRef]

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, "Optical beam steering using MEMS-controllable microlens array," Sens. Actuators A 91, 363-372 (2001).
[CrossRef]

Neff, J. A.

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, "Optical beam steering using MEMS-controllable microlens array," Sens. Actuators A 91, 363-372 (2001).
[CrossRef]

Nikolajeff, F.

Oh, K. W.

K. W. Oh, A. Han, S. Bhansali, and C. H. Ahn, "A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble microsystems," J. Micromech. Microeng. 12, 187-191 (2002).
[CrossRef]

Rajic, S.

L. R. Senesac, R. H. Farahi, J. L. Corbeil, D. D. Earl, S. Rajic, and P. G. Datskos, "Fabrication of integrated diffractive micro-optics for MEMS applications," in Optical Manufacturing and Testing IV, H. P. Stahl, eds., Proc. SPIE 4451, 295-305 (2001).
[CrossRef]

Senesac, L. R.

L. R. Senesac, R. H. Farahi, J. L. Corbeil, D. D. Earl, S. Rajic, and P. G. Datskos, "Fabrication of integrated diffractive micro-optics for MEMS applications," in Optical Manufacturing and Testing IV, H. P. Stahl, eds., Proc. SPIE 4451, 295-305 (2001).
[CrossRef]

Su, G. J.

H. Toshiyoshi, G. J. Su, J. LaCosse, and M. C. Wu, "Micro optical scanners of photoresist reflow lens on MEMS x⁢y-stage," Seisan-Kenkyu 53, 91-95 (2001).

Su, G.-D. J.

Toshiyoshi, H.

H. Toshiyoshi, G.-D. J. Su, J. LaCosse, and M. C. Wu, "A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process," J. Lightwave Technol. 21, 1700-1708 (2003).
[CrossRef]

H. Toshiyoshi, G. J. Su, J. LaCosse, and M. C. Wu, "Micro optical scanners of photoresist reflow lens on MEMS x⁢y-stage," Seisan-Kenkyu 53, 91-95 (2001).

Tuantranont, A.

K. Ishikawa, J. Zhang, A. Tuantranont, V. M. Bright, and Y. C. Lee, "An integrated micro-optical system for VCSEL-to-fiber active alignment," Sens. Actuators A 103, 109-115 (2003).
[CrossRef]

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, "Optical beam steering using MEMS-controllable microlens array," Sens. Actuators A 91, 363-372 (2001).
[CrossRef]

Wu, M. C.

H. Toshiyoshi, G.-D. J. Su, J. LaCosse, and M. C. Wu, "A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process," J. Lightwave Technol. 21, 1700-1708 (2003).
[CrossRef]

H. Toshiyoshi, G. J. Su, J. LaCosse, and M. C. Wu, "Micro optical scanners of photoresist reflow lens on MEMS x⁢y-stage," Seisan-Kenkyu 53, 91-95 (2001).

Zhang, J.

K. Ishikawa, J. Zhang, A. Tuantranont, V. M. Bright, and Y. C. Lee, "An integrated micro-optical system for VCSEL-to-fiber active alignment," Sens. Actuators A 103, 109-115 (2003).
[CrossRef]

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, "Optical beam steering using MEMS-controllable microlens array," Sens. Actuators A 91, 363-372 (2001).
[CrossRef]

Zhang, W.

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, "Optical beam steering using MEMS-controllable microlens array," Sens. Actuators A 91, 363-372 (2001).
[CrossRef]

Appl. Opt.

J. Lightwave Technol.

J. Micromech. Microeng.

C.-H. Kim and Y.-K. Kim, "Micro x⁢y-stage using silicon on a glass substrate," J. Micromech. Microeng. 12, 103-107 (2002).
[CrossRef]

K. W. Oh, A. Han, S. Bhansali, and C. H. Ahn, "A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble microsystems," J. Micromech. Microeng. 12, 187-191 (2002).
[CrossRef]

Opt. Photon. News

M. T. Gale, "Replicated diffractive optics and micro-optics," Opt. Photon. News 14, 24-29 (2003).
[CrossRef]

Proc. SPIE

L. R. Senesac, R. H. Farahi, J. L. Corbeil, D. D. Earl, S. Rajic, and P. G. Datskos, "Fabrication of integrated diffractive micro-optics for MEMS applications," in Optical Manufacturing and Testing IV, H. P. Stahl, eds., Proc. SPIE 4451, 295-305 (2001).
[CrossRef]

Seisan-Kenkyu

H. Toshiyoshi, G. J. Su, J. LaCosse, and M. C. Wu, "Micro optical scanners of photoresist reflow lens on MEMS x⁢y-stage," Seisan-Kenkyu 53, 91-95 (2001).

Sens. Actuators A

K. Ishikawa, J. Zhang, A. Tuantranont, V. M. Bright, and Y. C. Lee, "An integrated micro-optical system for VCSEL-to-fiber active alignment," Sens. Actuators A 103, 109-115 (2003).
[CrossRef]

A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, "Optical beam steering using MEMS-controllable microlens array," Sens. Actuators A 91, 363-372 (2001).
[CrossRef]

Other

Asahi Glass Company, "Technical information amorphous fluorocarbon polymer," 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Demonstrator device. A transmissive diffractive optical element on a silicon substrate positioned above a VCSEL mounted on a LTCC (low-temperature cofired ceramic) carrier. (b) Original diffractive structure after electron-beam writing and development. (c) Replication tool after electroplating and separation from the original. (d) Silicon wafer with spun polymer after hot-embossing step. (e) Silicon wafer after dry plasma etching of light path, still glued to carrier. (f) Silicon wafer after removal of polymer outside the optical structures.

Fig. 2
Fig. 2

Compensated dose profile for the electron-beam-lithography step.

Fig. 3
Fig. 3

(a) AFM scan of the original diffractive lens after electron-beam writing and development (PMGII SF-15 resist). (b) AFM scan of the diffractive lens hot embossed into spun Cytop polymer on silicon. (c) AFM scan of a hot-embossed diffractive lens after etching of light-path openings and separation from the carrier.

Fig. 4
Fig. 4

Top-view microscope photograph of a replicated diffractive Cytop lens on silicon.

Fig. 5
Fig. 5

Silicon substrate with replicated lens after window etching. The substrate is placed on top of the LTCC substrate.

Fig. 6
Fig. 6

(a) Intensity distribution of the light from a VCSEL traversing an unpatterned region of the polymer membrane. (b) Light from a VCSEL when collimated by the diffractive lens in the polymer membrane. Because of the high peak intensity, the camera is saturated in this figure.

Fig. 7
Fig. 7

Far field produced by the fan-out diffractive element in the polymer membrane.

Metrics