Abstract

Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6µm period grating increases the efficiency by 7% and 14.5% for 0.6µm and 1.65µm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%90% for 410µm zone periods was obtained experimentally with this method.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
    [CrossRef]
  2. C. Pruss, S. Reichelt, H. J. Tiziani, and V. P. Korolkov, "Metrological features of diffractive high-efficiency objectives for laser interferometry," in Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, Y. V. Chugui, S. N. Bagayev, A. Weckenmann, and P. H. Osanna, eds., Proc. SPIE 4900, 873-884 (2002).
    [CrossRef]
  3. M. Kuittinen, H. P. Herzig, and P. Ehbets, "Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures," Opt. Commun. 120, 230-234 (1995).
    [CrossRef]
  4. M. Ekberg, F. Nikolaeff, M. Larson, and S. Härd, "Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography," Appl. Opt. 33, 103-107 (1994).
    [CrossRef] [PubMed]
  5. T. Hessler, M. Rossi, R. E. Kunz, and M. T. Gale, "Analysis and optimization of fabrication of continuous-relief diffractive optical elements," Appl. Opt. 37, 4069-4079 (1998).
    [CrossRef]
  6. W. V. Spiegel, S. Stankovic, M. Budach, and D. Dias, "Fabrication, optimization and measurement of microstructures for optical applications," in Annual Report 2000/01, Microoptical Systems (Institut fuer Angewandte Physik, 2001), pp. 69-70.
  7. F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron. Devices ED-22, 445-452 (1975).
    [CrossRef]
  8. C. A. Mack, "New kinetic model for resist dissolution," J. Electrochem. Soc. 139, L35-L37 (1992).
    [CrossRef]
  9. S. A. Robertson, E. K. Pavelchek, W. Hoppe, and R. Wildfeuer, "Improved notch model for resist dissolution in lithography simulation," in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE 4345, 108-117 (2001).
  10. W. Goltsos and S. Liu, "Polar coordinate laser writer for binary optics fabrication," in Computer and Optically Formed Holographic Optics, I. Cindrich and S. H. Lee, eds., Proc. SPIE 1211, 137-147 (1990).
  11. J. P. Bowen, R. L. Michaels, and C. G. Blough, "Generation of large-diameter diffractive elements with laser pattern generation," Appl. Opt. 36, 8970-8975 (1997).
    [CrossRef]
  12. E. Rasmussen, "A new plotter for small structures," in Optics and Fluid Department Annual Progress Report for 2000, S. H. Hanson, P. M. Johansen, J. P. Lunov, and B. Scaarup, eds., (Risø National Laboratory, 2001), pp. 11-12.
  13. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, "Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure," Appl. Opt. 38, 1295-1301 (1999).
    [CrossRef]
  14. A. G. Poleshchuk, V. P. Korolkov, V. V. Cherkashin, S. Reichelt, and J. Burge, "Methods for minimizing the errors in direct laser writing of diffractive optical elements," Optoelectron. Instrum. Process. (Avtometriya) 3, 3-15 (2002).
  15. M. T. Gale and K. Knop, "Fabrication of fine lens array by laser beam writing," in Industrial Applications of Laser Technology, W. F. Fagan, ed., Proc. SPIE 398, 347-353 (1983).
  16. M. Haruna, M. Takahashi, K. Wakahayashi, and H. Nishihara, "Laser beam lithographed micro-Fresnel lenses," Appl. Opt. 29, 5120-5126 (1990).
    [CrossRef] [PubMed]
  17. M. T. Gale, M. Rossi, H. Schütz, P. Ehberts, H. P. Herzig, and D. Pronque, "Continuous-relief diffractive optical elements for two-dimensional array generation," Appl. Opt. 32, 2526-2533 (1993).
    [CrossRef] [PubMed]
  18. H. Anderson, M. Ekberg, S. Hard, S. Jacobsson, M. Larsson, and T. Nilsson, "Single photomask, multilevel kinoforms in quartz and photoresist: manufacture and evaluation," Appl. Opt. 29, 4259-4264 (1990).
    [CrossRef]
  19. B. Kress and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology (John Wiley, 2000).

2002 (2)

C. Pruss, S. Reichelt, H. J. Tiziani, and V. P. Korolkov, "Metrological features of diffractive high-efficiency objectives for laser interferometry," in Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, Y. V. Chugui, S. N. Bagayev, A. Weckenmann, and P. H. Osanna, eds., Proc. SPIE 4900, 873-884 (2002).
[CrossRef]

A. G. Poleshchuk, V. P. Korolkov, V. V. Cherkashin, S. Reichelt, and J. Burge, "Methods for minimizing the errors in direct laser writing of diffractive optical elements," Optoelectron. Instrum. Process. (Avtometriya) 3, 3-15 (2002).

2001 (1)

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

1995 (1)

M. Kuittinen, H. P. Herzig, and P. Ehbets, "Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures," Opt. Commun. 120, 230-234 (1995).
[CrossRef]

1994 (1)

1993 (1)

1992 (1)

C. A. Mack, "New kinetic model for resist dissolution," J. Electrochem. Soc. 139, L35-L37 (1992).
[CrossRef]

1990 (2)

1975 (1)

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron. Devices ED-22, 445-452 (1975).
[CrossRef]

Anderson, H.

Blough, C. G.

Bowen, J. P.

Budach, M.

W. V. Spiegel, S. Stankovic, M. Budach, and D. Dias, "Fabrication, optimization and measurement of microstructures for optical applications," in Annual Report 2000/01, Microoptical Systems (Institut fuer Angewandte Physik, 2001), pp. 69-70.

Burge, J.

A. G. Poleshchuk, V. P. Korolkov, V. V. Cherkashin, S. Reichelt, and J. Burge, "Methods for minimizing the errors in direct laser writing of diffractive optical elements," Optoelectron. Instrum. Process. (Avtometriya) 3, 3-15 (2002).

Cherkashin, V. V.

A. G. Poleshchuk, V. P. Korolkov, V. V. Cherkashin, S. Reichelt, and J. Burge, "Methods for minimizing the errors in direct laser writing of diffractive optical elements," Optoelectron. Instrum. Process. (Avtometriya) 3, 3-15 (2002).

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, "Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure," Appl. Opt. 38, 1295-1301 (1999).
[CrossRef]

Churin, E. G.

Dias, D.

W. V. Spiegel, S. Stankovic, M. Budach, and D. Dias, "Fabrication, optimization and measurement of microstructures for optical applications," in Annual Report 2000/01, Microoptical Systems (Institut fuer Angewandte Physik, 2001), pp. 69-70.

Dill, F. H.

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron. Devices ED-22, 445-452 (1975).
[CrossRef]

Ehberts, P.

Ehbets, P.

M. Kuittinen, H. P. Herzig, and P. Ehbets, "Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures," Opt. Commun. 120, 230-234 (1995).
[CrossRef]

Ekberg, M.

Gale, M. T.

Goltsos, W.

W. Goltsos and S. Liu, "Polar coordinate laser writer for binary optics fabrication," in Computer and Optically Formed Holographic Optics, I. Cindrich and S. H. Lee, eds., Proc. SPIE 1211, 137-147 (1990).

Hard, S.

Härd, S.

Haruna, M.

Hauge, P. S.

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron. Devices ED-22, 445-452 (1975).
[CrossRef]

Herzig, H. P.

M. Kuittinen, H. P. Herzig, and P. Ehbets, "Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures," Opt. Commun. 120, 230-234 (1995).
[CrossRef]

M. T. Gale, M. Rossi, H. Schütz, P. Ehberts, H. P. Herzig, and D. Pronque, "Continuous-relief diffractive optical elements for two-dimensional array generation," Appl. Opt. 32, 2526-2533 (1993).
[CrossRef] [PubMed]

Hessler, T.

Hoppe, W.

S. A. Robertson, E. K. Pavelchek, W. Hoppe, and R. Wildfeuer, "Improved notch model for resist dissolution in lithography simulation," in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE 4345, 108-117 (2001).

Hornberger, W. P.

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron. Devices ED-22, 445-452 (1975).
[CrossRef]

Jacobsson, S.

Kharissov, A. A.

Kiryanov, A. V.

Kiryanov, V. P.

Knop, K.

M. T. Gale and K. Knop, "Fabrication of fine lens array by laser beam writing," in Industrial Applications of Laser Technology, W. F. Fagan, ed., Proc. SPIE 398, 347-353 (1983).

Kokarev, S. A.

Korolkov, V. P.

A. G. Poleshchuk, V. P. Korolkov, V. V. Cherkashin, S. Reichelt, and J. Burge, "Methods for minimizing the errors in direct laser writing of diffractive optical elements," Optoelectron. Instrum. Process. (Avtometriya) 3, 3-15 (2002).

C. Pruss, S. Reichelt, H. J. Tiziani, and V. P. Korolkov, "Metrological features of diffractive high-efficiency objectives for laser interferometry," in Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, Y. V. Chugui, S. N. Bagayev, A. Weckenmann, and P. H. Osanna, eds., Proc. SPIE 4900, 873-884 (2002).
[CrossRef]

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, "Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure," Appl. Opt. 38, 1295-1301 (1999).
[CrossRef]

Koronkevich, V. P.

Kress, B.

B. Kress and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology (John Wiley, 2000).

Kuittinen, M.

M. Kuittinen, H. P. Herzig, and P. Ehbets, "Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures," Opt. Commun. 120, 230-234 (1995).
[CrossRef]

Kunz, R. E.

Larson, M.

Larsson, M.

Liu, S.

W. Goltsos and S. Liu, "Polar coordinate laser writer for binary optics fabrication," in Computer and Optically Formed Holographic Optics, I. Cindrich and S. H. Lee, eds., Proc. SPIE 1211, 137-147 (1990).

Mack, C. A.

C. A. Mack, "New kinetic model for resist dissolution," J. Electrochem. Soc. 139, L35-L37 (1992).
[CrossRef]

Malyshev, A. I.

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

Meyrueis, P.

B. Kress and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology (John Wiley, 2000).

Michaels, R. L.

Nikolaeff, F.

Nilsson, T.

Nishihara, H.

Pavelchek, E. K.

S. A. Robertson, E. K. Pavelchek, W. Hoppe, and R. Wildfeuer, "Improved notch model for resist dissolution in lithography simulation," in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE 4345, 108-117 (2001).

Poleshchuk, A. G.

A. G. Poleshchuk, V. P. Korolkov, V. V. Cherkashin, S. Reichelt, and J. Burge, "Methods for minimizing the errors in direct laser writing of diffractive optical elements," Optoelectron. Instrum. Process. (Avtometriya) 3, 3-15 (2002).

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, "Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure," Appl. Opt. 38, 1295-1301 (1999).
[CrossRef]

Pronque, D.

Pruss, C.

C. Pruss, S. Reichelt, H. J. Tiziani, and V. P. Korolkov, "Metrological features of diffractive high-efficiency objectives for laser interferometry," in Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, Y. V. Chugui, S. N. Bagayev, A. Weckenmann, and P. H. Osanna, eds., Proc. SPIE 4900, 873-884 (2002).
[CrossRef]

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

Rasmussen, E.

E. Rasmussen, "A new plotter for small structures," in Optics and Fluid Department Annual Progress Report for 2000, S. H. Hanson, P. M. Johansen, J. P. Lunov, and B. Scaarup, eds., (Risø National Laboratory, 2001), pp. 11-12.

Reichelt, S.

C. Pruss, S. Reichelt, H. J. Tiziani, and V. P. Korolkov, "Metrological features of diffractive high-efficiency objectives for laser interferometry," in Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, Y. V. Chugui, S. N. Bagayev, A. Weckenmann, and P. H. Osanna, eds., Proc. SPIE 4900, 873-884 (2002).
[CrossRef]

A. G. Poleshchuk, V. P. Korolkov, V. V. Cherkashin, S. Reichelt, and J. Burge, "Methods for minimizing the errors in direct laser writing of diffractive optical elements," Optoelectron. Instrum. Process. (Avtometriya) 3, 3-15 (2002).

Robertson, S. A.

S. A. Robertson, E. K. Pavelchek, W. Hoppe, and R. Wildfeuer, "Improved notch model for resist dissolution in lithography simulation," in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE 4345, 108-117 (2001).

Rossi, M.

Schoder, T.

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

Schütz, H.

Shaw, J. M.

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron. Devices ED-22, 445-452 (1975).
[CrossRef]

Spiegel, W. V.

W. V. Spiegel, S. Stankovic, M. Budach, and D. Dias, "Fabrication, optimization and measurement of microstructures for optical applications," in Annual Report 2000/01, Microoptical Systems (Institut fuer Angewandte Physik, 2001), pp. 69-70.

Stankovic, S.

W. V. Spiegel, S. Stankovic, M. Budach, and D. Dias, "Fabrication, optimization and measurement of microstructures for optical applications," in Annual Report 2000/01, Microoptical Systems (Institut fuer Angewandte Physik, 2001), pp. 69-70.

Takahashi, M.

Tiziani, H. J.

C. Pruss, S. Reichelt, H. J. Tiziani, and V. P. Korolkov, "Metrological features of diffractive high-efficiency objectives for laser interferometry," in Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, Y. V. Chugui, S. N. Bagayev, A. Weckenmann, and P. H. Osanna, eds., Proc. SPIE 4900, 873-884 (2002).
[CrossRef]

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

Verhoglyad, A. G.

Wakahayashi, K.

Westhauser, J.

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

Wildfeuer, R.

S. A. Robertson, E. K. Pavelchek, W. Hoppe, and R. Wildfeuer, "Improved notch model for resist dissolution in lithography simulation," in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE 4345, 108-117 (2001).

Wu, C.

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

Appl. Opt. (7)

IEEE Trans. Electron. Devices (1)

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron. Devices ED-22, 445-452 (1975).
[CrossRef]

J. Electrochem. Soc. (1)

C. A. Mack, "New kinetic model for resist dissolution," J. Electrochem. Soc. 139, L35-L37 (1992).
[CrossRef]

Opt. Commun. (1)

M. Kuittinen, H. P. Herzig, and P. Ehbets, "Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures," Opt. Commun. 120, 230-234 (1995).
[CrossRef]

Optoelectron. Instrum. Process. (1)

A. G. Poleshchuk, V. P. Korolkov, V. V. Cherkashin, S. Reichelt, and J. Burge, "Methods for minimizing the errors in direct laser writing of diffractive optical elements," Optoelectron. Instrum. Process. (Avtometriya) 3, 3-15 (2002).

Proc. SPIE (2)

V. P. Korolkov, A. I. Malyshev, A. G. Poleshchuk, V. V. Cherkashin, H. J. Tiziani, C. Pruss, T. Schoder, J. Westhauser, and C. Wu, "Fabrication of gray-scale masks and diffractive optical elements with LDW glass," in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley and H. P. Herzig, eds., Proc. SPIE 4440, 73-84 (2001).
[CrossRef]

C. Pruss, S. Reichelt, H. J. Tiziani, and V. P. Korolkov, "Metrological features of diffractive high-efficiency objectives for laser interferometry," in Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, Y. V. Chugui, S. N. Bagayev, A. Weckenmann, and P. H. Osanna, eds., Proc. SPIE 4900, 873-884 (2002).
[CrossRef]

Other (6)

W. V. Spiegel, S. Stankovic, M. Budach, and D. Dias, "Fabrication, optimization and measurement of microstructures for optical applications," in Annual Report 2000/01, Microoptical Systems (Institut fuer Angewandte Physik, 2001), pp. 69-70.

S. A. Robertson, E. K. Pavelchek, W. Hoppe, and R. Wildfeuer, "Improved notch model for resist dissolution in lithography simulation," in Advances in Resist Technology and Processing XVIII, F. M. Houlihan, ed., Proc. SPIE 4345, 108-117 (2001).

W. Goltsos and S. Liu, "Polar coordinate laser writer for binary optics fabrication," in Computer and Optically Formed Holographic Optics, I. Cindrich and S. H. Lee, eds., Proc. SPIE 1211, 137-147 (1990).

M. T. Gale and K. Knop, "Fabrication of fine lens array by laser beam writing," in Industrial Applications of Laser Technology, W. F. Fagan, ed., Proc. SPIE 398, 347-353 (1983).

E. Rasmussen, "A new plotter for small structures," in Optics and Fluid Department Annual Progress Report for 2000, S. H. Hanson, P. M. Johansen, J. P. Lunov, and B. Scaarup, eds., (Risø National Laboratory, 2001), pp. 11-12.

B. Kress and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology (John Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Convolution of exposure data P ( x ) with a light-intensity distribution I ( x ) in the writing spot: E ( x ) , exposure-energy distribution.

Fig. 2
Fig. 2

Bar plots of optimized exposure data: (a) for IPO2, (b) for IPO3, (c) with a stepped transition function. Chain curves, Gaussian intensity distributions for a 1.65 µm writing spot; dashed curves, ideal profiles in relative units; solid curves, convoluted profiles.

Fig. 3
Fig. 3

STF parameters obtained at launchings of the ZBO method with different zone periods: spot size, 1.65 µm (FWHM); interscan distance, 0.4 µm ; intensity-modulation range, 0 1.5 .

Fig. 4
Fig. 4

(a) Measured intensity distribution in a writing spot and a Gaussian distribution. (b) Theoretical diffraction efficiency as a function of interscan distance. Grating period, 10 µm ; writing-spot diameter, 0.6 µm .

Fig. 5
Fig. 5

Theoretical and measured diffraction efficiencies as functions of the grating period for a 0.5 µm interscan distance. Writing-spot diameter, 0.6 µm .

Fig. 6
Fig. 6

Theoretical diffraction efficiency as a function of the grating period for a 0.25 µm interscan distance.

Fig. 7
Fig. 7

Geometric representation of a simplified two-dimensional realization of ZBO: B, boundary of the diffractive zone; x, writing-beam trajectory. Other definitions are given in the text.

Fig. 8
Fig. 8

(a) Diffractive lens with an optimized profile. (b) Atomic force micrograph of diffractive zones with a 6.5 µm period.

Fig. 9
Fig. 9

Measured and simulated diffraction efficiencies as functions of the grating period for ZBO.

Tables (2)

Tables Icon

Table 1 Theoretical Diffraction Efficiency (%) Calculated by Different Optimization Methods a

Tables Icon

Table 2 Theoretical Diffraction Efficiency Calculated for Grating Profiles Simulated for Different STF a

Metrics