Abstract

A surface plasmon resonance (SPR)-based optical touch sensor structure is proposed that provides high switch sensitivity and requires a weak activating force. Our proposed SPR-based optical touch sensor is arranged in a compact Kretschmann–Raether configuration in which the prism acting as our sensor head is coated with a metal nanofilm. Our optical-based noise rejection scheme relies on wavelength filtering, spatial filtering, and high reflectivity of the metal nanofilm, whereas our electrical-based noise reduction is obtained by means of an electrical signal filtering process. In our experimental proof of concept, a visible laser diode at a 655  nm centered wavelength and a prism made from BK7 with a 50 nm thick gold layer on the touching surface are used, showing a 7.85  dB optical contrast ratio for the first touch. An estimated weak mechanical force of <0.1  N is also observed that sufficiently activates the desired electrical load. It is tested for 51 operations without sensor malfunction under typical and very high illumination of 342  and   3000   lx, respectively. In this case, a measured average optical contrast of 0.80  dB is obtained with a ±0.47  dB fluctuation, implying that the refractive index change in a small 3.2% of the overall active area is enough for our SPR-based optical touch sensor to function properly. Increasing optical contrast in our SPR-based optical touch sensor can be accomplished by using a higher polarization-extinction ratio and a narrower-bandwidth optical beam. A controlled environment and gold-coated surface using the thin-film sputtering technique can help improve the reliability and the durability of our SPR-based optical touch sensor. Other key features include ease of implementation, prevention of a light beam becoming incident on the user, and the ability to accept both strong and weak activating forces.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Dieulesaint, D. Royer, O. Legras, and A. Chaabi, "Acoustic plate mode touch screen," Electron. Lett. 27, 49-51 (1991).
    [Crossref]
  2. G. Kwon, F. Arai, T. Fukuda, K. Itoigawa, and Y. Tsukahara, "Micro touch sensor array made by hydrothermal method," presented at the International Symposium on Micromechatronics and Human Science, Nogoya, Japan, September 2001.
  3. P. T. Krien and R. D. Meadows, "The electroquasistatics of the capacitive touch panel," IEEE Trans. Ind. Appl. 26, 529-534 (1990).
    [Crossref]
  4. E. So, H. Zhang, and Y.-S. Guan, "Sensing contact with analog resistive technology," in IEEE Conference on Systems, Man, and Cybernetics (Institute of Electrical and Electronics Engineers, 1999), Vol. 2, pp. 806-811.
  5. S. Mascaro and H. H. Asada, "Fingernail touch sensors: spatially distributed measurement and hemodynamic modeling," presented at the IEEE Conference on Robotics and Automation, San Francisco, Calif. April 2000.
  6. S. Sumriddetchkajorn, "Optical touch switch based on total internal reflection," Opt. Eng. 42, 787-791 (2003).
    [Crossref]
  7. S. Sumriddetchkajorn and R. Amarit, "Light-scattering-based high contrast optical touch sensor architectures in transmissive and reflective configurations," in Optoelectronic Devices and Integration, H. Ming, X. Zhang, and M. Y. Chen, eds., Proc. SPIE 5644, 87-93 (2005).
    [Crossref]
  8. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer, 1986).
  9. W. B. Lin, J. M. Chovelon, and N. J. Renault, "Fiber-optic surface-plasmon resonance for the determination of thickness and optical constants of thin metal films," Appl. Opt. 39, 3261-3265 (2000).
    [Crossref]
  10. S. S. Yee, ed., "Surface plasmon resonance (SPR) optical sensors, current technology and applications," Sens. Actuators B 54 (1999).
  11. K. Sasaki and T. Nagamura, "Ultrafast all-optical switch using complex refractive index changes of thin films containing photochromic dye," Appl. Phys. Lett. 71, 434-436 (1997).
    [Crossref]
  12. O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, "High frequency attenuated total internal reflection light modulator," Appl. Phys. Lett. 61, 2500-2502 (1992).
    [Crossref]
  13. Y. Wang, "Voltage-induced color-selective absorption with surface plasmons," Appl. Phys. Lett. 67, 2759-2701 (1995).
    [Crossref]
  14. T. Nakano, K. Baba, and M. Miyagi, "Insertion loss and extinction ratio of a surface plasmon-polariton polarizer: theoretical analysis," J. Opt. Soc. Am. B 11, 2030-2035 (1994).
    [Crossref]
  15. M. E. Caldwell and E. M. Yeatman, "Surface-plasmon spatial light modulators based on liquid crystal," Appl. Opt. 31, 3880-3891 (1992).
    [Crossref] [PubMed]
  16. R. A. Paquin, "Properties of metal," in Handbook of Optics, M.Bass, ed. (McGraw-Hill, 1995), Vol. 2, Chap. 35.
  17. S. Y. El-Zaiat, "Interferometric determination of refraction and dispersion of human blood-serum, saliva, sweat and urine," Opt. Laser Technol. 35, 55-60 (2003).
    [Crossref]
  18. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
    [Crossref] [PubMed]

2005 (1)

S. Sumriddetchkajorn and R. Amarit, "Light-scattering-based high contrast optical touch sensor architectures in transmissive and reflective configurations," in Optoelectronic Devices and Integration, H. Ming, X. Zhang, and M. Y. Chen, eds., Proc. SPIE 5644, 87-93 (2005).
[Crossref]

2003 (2)

S. Y. El-Zaiat, "Interferometric determination of refraction and dispersion of human blood-serum, saliva, sweat and urine," Opt. Laser Technol. 35, 55-60 (2003).
[Crossref]

S. Sumriddetchkajorn, "Optical touch switch based on total internal reflection," Opt. Eng. 42, 787-791 (2003).
[Crossref]

2000 (1)

1999 (1)

S. S. Yee, ed., "Surface plasmon resonance (SPR) optical sensors, current technology and applications," Sens. Actuators B 54 (1999).

1997 (1)

K. Sasaki and T. Nagamura, "Ultrafast all-optical switch using complex refractive index changes of thin films containing photochromic dye," Appl. Phys. Lett. 71, 434-436 (1997).
[Crossref]

1995 (1)

Y. Wang, "Voltage-induced color-selective absorption with surface plasmons," Appl. Phys. Lett. 67, 2759-2701 (1995).
[Crossref]

1994 (1)

1992 (2)

M. E. Caldwell and E. M. Yeatman, "Surface-plasmon spatial light modulators based on liquid crystal," Appl. Opt. 31, 3880-3891 (1992).
[Crossref] [PubMed]

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, "High frequency attenuated total internal reflection light modulator," Appl. Phys. Lett. 61, 2500-2502 (1992).
[Crossref]

1991 (1)

E. Dieulesaint, D. Royer, O. Legras, and A. Chaabi, "Acoustic plate mode touch screen," Electron. Lett. 27, 49-51 (1991).
[Crossref]

1990 (1)

P. T. Krien and R. D. Meadows, "The electroquasistatics of the capacitive touch panel," IEEE Trans. Ind. Appl. 26, 529-534 (1990).
[Crossref]

1989 (1)

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[Crossref] [PubMed]

Amarit, R.

S. Sumriddetchkajorn and R. Amarit, "Light-scattering-based high contrast optical touch sensor architectures in transmissive and reflective configurations," in Optoelectronic Devices and Integration, H. Ming, X. Zhang, and M. Y. Chen, eds., Proc. SPIE 5644, 87-93 (2005).
[Crossref]

Arai, F.

G. Kwon, F. Arai, T. Fukuda, K. Itoigawa, and Y. Tsukahara, "Micro touch sensor array made by hydrothermal method," presented at the International Symposium on Micromechatronics and Human Science, Nogoya, Japan, September 2001.

Asada, H. H.

S. Mascaro and H. H. Asada, "Fingernail touch sensors: spatially distributed measurement and hemodynamic modeling," presented at the IEEE Conference on Robotics and Automation, San Francisco, Calif. April 2000.

Baba, K.

Bloom, D. M.

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, "High frequency attenuated total internal reflection light modulator," Appl. Phys. Lett. 61, 2500-2502 (1992).
[Crossref]

Caldwell, M. E.

Chaabi, A.

E. Dieulesaint, D. Royer, O. Legras, and A. Chaabi, "Acoustic plate mode touch screen," Electron. Lett. 27, 49-51 (1991).
[Crossref]

Chovelon, J. M.

Dieulesaint, E.

E. Dieulesaint, D. Royer, O. Legras, and A. Chaabi, "Acoustic plate mode touch screen," Electron. Lett. 27, 49-51 (1991).
[Crossref]

El-Zaiat, S. Y.

S. Y. El-Zaiat, "Interferometric determination of refraction and dispersion of human blood-serum, saliva, sweat and urine," Opt. Laser Technol. 35, 55-60 (2003).
[Crossref]

Fukuda, T.

G. Kwon, F. Arai, T. Fukuda, K. Itoigawa, and Y. Tsukahara, "Micro touch sensor array made by hydrothermal method," presented at the International Symposium on Micromechatronics and Human Science, Nogoya, Japan, September 2001.

Guan, Y.-S.

E. So, H. Zhang, and Y.-S. Guan, "Sensing contact with analog resistive technology," in IEEE Conference on Systems, Man, and Cybernetics (Institute of Electrical and Electronics Engineers, 1999), Vol. 2, pp. 806-811.

Ho, F.

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, "High frequency attenuated total internal reflection light modulator," Appl. Phys. Lett. 61, 2500-2502 (1992).
[Crossref]

Itoigawa, K.

G. Kwon, F. Arai, T. Fukuda, K. Itoigawa, and Y. Tsukahara, "Micro touch sensor array made by hydrothermal method," presented at the International Symposium on Micromechatronics and Human Science, Nogoya, Japan, September 2001.

Jacques, S. L.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[Crossref] [PubMed]

Krien, P. T.

P. T. Krien and R. D. Meadows, "The electroquasistatics of the capacitive touch panel," IEEE Trans. Ind. Appl. 26, 529-534 (1990).
[Crossref]

Kwon, G.

G. Kwon, F. Arai, T. Fukuda, K. Itoigawa, and Y. Tsukahara, "Micro touch sensor array made by hydrothermal method," presented at the International Symposium on Micromechatronics and Human Science, Nogoya, Japan, September 2001.

Legras, O.

E. Dieulesaint, D. Royer, O. Legras, and A. Chaabi, "Acoustic plate mode touch screen," Electron. Lett. 27, 49-51 (1991).
[Crossref]

Lin, W. B.

Mascaro, S.

S. Mascaro and H. H. Asada, "Fingernail touch sensors: spatially distributed measurement and hemodynamic modeling," presented at the IEEE Conference on Robotics and Automation, San Francisco, Calif. April 2000.

Meadows, R. D.

P. T. Krien and R. D. Meadows, "The electroquasistatics of the capacitive touch panel," IEEE Trans. Ind. Appl. 26, 529-534 (1990).
[Crossref]

Miyagi, M.

Nagamura, T.

K. Sasaki and T. Nagamura, "Ultrafast all-optical switch using complex refractive index changes of thin films containing photochromic dye," Appl. Phys. Lett. 71, 434-436 (1997).
[Crossref]

Nakano, T.

Paquin, R. A.

R. A. Paquin, "Properties of metal," in Handbook of Optics, M.Bass, ed. (McGraw-Hill, 1995), Vol. 2, Chap. 35.

Raether, H.

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer, 1986).

Renault, N. J.

Royer, D.

E. Dieulesaint, D. Royer, O. Legras, and A. Chaabi, "Acoustic plate mode touch screen," Electron. Lett. 27, 49-51 (1991).
[Crossref]

Sasaki, K.

K. Sasaki and T. Nagamura, "Ultrafast all-optical switch using complex refractive index changes of thin films containing photochromic dye," Appl. Phys. Lett. 71, 434-436 (1997).
[Crossref]

So, E.

E. So, H. Zhang, and Y.-S. Guan, "Sensing contact with analog resistive technology," in IEEE Conference on Systems, Man, and Cybernetics (Institute of Electrical and Electronics Engineers, 1999), Vol. 2, pp. 806-811.

Solgaard, O.

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, "High frequency attenuated total internal reflection light modulator," Appl. Phys. Lett. 61, 2500-2502 (1992).
[Crossref]

Star, W. M.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[Crossref] [PubMed]

Sumriddetchkajorn, S.

S. Sumriddetchkajorn and R. Amarit, "Light-scattering-based high contrast optical touch sensor architectures in transmissive and reflective configurations," in Optoelectronic Devices and Integration, H. Ming, X. Zhang, and M. Y. Chen, eds., Proc. SPIE 5644, 87-93 (2005).
[Crossref]

S. Sumriddetchkajorn, "Optical touch switch based on total internal reflection," Opt. Eng. 42, 787-791 (2003).
[Crossref]

Thackara, J. I.

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, "High frequency attenuated total internal reflection light modulator," Appl. Phys. Lett. 61, 2500-2502 (1992).
[Crossref]

Tsukahara, Y.

G. Kwon, F. Arai, T. Fukuda, K. Itoigawa, and Y. Tsukahara, "Micro touch sensor array made by hydrothermal method," presented at the International Symposium on Micromechatronics and Human Science, Nogoya, Japan, September 2001.

Van Gemert, M. J. C.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, "Voltage-induced color-selective absorption with surface plasmons," Appl. Phys. Lett. 67, 2759-2701 (1995).
[Crossref]

Yeatman, E. M.

Yee, S. S.

S. S. Yee, ed., "Surface plasmon resonance (SPR) optical sensors, current technology and applications," Sens. Actuators B 54 (1999).

Zhang, H.

E. So, H. Zhang, and Y.-S. Guan, "Sensing contact with analog resistive technology," in IEEE Conference on Systems, Man, and Cybernetics (Institute of Electrical and Electronics Engineers, 1999), Vol. 2, pp. 806-811.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

K. Sasaki and T. Nagamura, "Ultrafast all-optical switch using complex refractive index changes of thin films containing photochromic dye," Appl. Phys. Lett. 71, 434-436 (1997).
[Crossref]

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, "High frequency attenuated total internal reflection light modulator," Appl. Phys. Lett. 61, 2500-2502 (1992).
[Crossref]

Y. Wang, "Voltage-induced color-selective absorption with surface plasmons," Appl. Phys. Lett. 67, 2759-2701 (1995).
[Crossref]

Electron. Lett. (1)

E. Dieulesaint, D. Royer, O. Legras, and A. Chaabi, "Acoustic plate mode touch screen," Electron. Lett. 27, 49-51 (1991).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[Crossref] [PubMed]

IEEE Trans. Ind. Appl. (1)

P. T. Krien and R. D. Meadows, "The electroquasistatics of the capacitive touch panel," IEEE Trans. Ind. Appl. 26, 529-534 (1990).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

S. Sumriddetchkajorn, "Optical touch switch based on total internal reflection," Opt. Eng. 42, 787-791 (2003).
[Crossref]

Opt. Laser Technol. (1)

S. Y. El-Zaiat, "Interferometric determination of refraction and dispersion of human blood-serum, saliva, sweat and urine," Opt. Laser Technol. 35, 55-60 (2003).
[Crossref]

Proc. SPIE (1)

S. Sumriddetchkajorn and R. Amarit, "Light-scattering-based high contrast optical touch sensor architectures in transmissive and reflective configurations," in Optoelectronic Devices and Integration, H. Ming, X. Zhang, and M. Y. Chen, eds., Proc. SPIE 5644, 87-93 (2005).
[Crossref]

Sens. Actuators B (1)

S. S. Yee, ed., "Surface plasmon resonance (SPR) optical sensors, current technology and applications," Sens. Actuators B 54 (1999).

Other (5)

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer, 1986).

E. So, H. Zhang, and Y.-S. Guan, "Sensing contact with analog resistive technology," in IEEE Conference on Systems, Man, and Cybernetics (Institute of Electrical and Electronics Engineers, 1999), Vol. 2, pp. 806-811.

S. Mascaro and H. H. Asada, "Fingernail touch sensors: spatially distributed measurement and hemodynamic modeling," presented at the IEEE Conference on Robotics and Automation, San Francisco, Calif. April 2000.

G. Kwon, F. Arai, T. Fukuda, K. Itoigawa, and Y. Tsukahara, "Micro touch sensor array made by hydrothermal method," presented at the International Symposium on Micromechatronics and Human Science, Nogoya, Japan, September 2001.

R. A. Paquin, "Properties of metal," in Handbook of Optics, M.Bass, ed. (McGraw-Hill, 1995), Vol. 2, Chap. 35.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Proposed SPR-based optical touch sensor architecture with a hybrid noise rejection scheme. PD, photodetector; G, gain; BPF, bandpass filter.

Fig. 2
Fig. 2

Optical-based noise rejection method by reflection and refraction at the thin metal layer on the touching surface of our SPR-based optical touch sensor.

Fig. 3
Fig. 3

Experimental setup of our proposed SPR-based optical touch sensor structure. LED, light-emitting diode; RF, radio frequency.

Fig. 4
Fig. 4

(Color online) LED states of operation when (a) there is no fingertip on the touching surface of our SPR-based optical touch sensor with the LED at the OFF state and (b) the fingertip is placed on the touching surface of our SPR-based optical touch sensor with the LED at the ON state. A two-dimensional image of the optical beam on the PD plane is shown on the right-hand side for each case.

Fig. 5
Fig. 5

Relationship between the measured optical contrast and number of operations when the fingertip is placed on the touching surface of our SPR-based optical touch sensor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin θ SPR = ( 1 / n ) ε m r n 2     2 ε m r + n 2     2 .
R p = | r 01           p + r 12           p exp ( j 2 k m d ) 1 + r 01         p r 12           p exp ( j 2 k m d ) | 2 ,

Metrics