Abstract

We have theoretically analyzed the influence of temperature on the performance of a fiber-optic sensor based on surface-plasmon resonance (SPR). The performance of the sensor has been evaluated in terms of its sensitivity and signal-to-noise ratio (SNR). The theoretical model for temperature dependence includes the thermo-optic effect in the fiber core and sensing layer, and phonon–electron scattering along with electron–electron scattering in the metal layer. The effect of temperature on the SNR and the sensitivity of the sensor with two different metals has been compared. The same comparison is carried out for the sensing layers with positive and negative thermo-optic coefficients. The theoretical model has been analyzed for both the nonremote and remote sensing cases. This detailed analysis of temperature-dependent SNR and sensitivity leads to achieving the best possible performance from a fiber-optic SPR sensor against the temperature variation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
    [CrossRef]
  2. J. Homola, "On the sensitivity of surface-plasmon resonance sensors with spectral interrogation," Sens. Actuators B 41, 207-211 (1997).
    [CrossRef]
  3. Z. Salamon, H. A. Macleod, and G. Tollin, "Surface-plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles," Biochim. Biophys. Acta 1331, 117-129 (1997).
    [PubMed]
  4. S. L. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface-plasmon resonance sensors to absorbed films," Langmuir 14, 5636-5648 (1998).
    [CrossRef]
  5. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  6. E. Kretchmann and H. Reather, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. B 23, 2135-2136 (1968).
  7. A. Otto, "Exitation of nonradiative surface-plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
    [CrossRef]
  8. E. Kretchmann, "Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmashwingungen," Z. Phys. 241, 313-324 (1971).
    [CrossRef]
  9. R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface-plasmon resonance," Sens. Actuators B. 12, 213-220 (1993).
    [CrossRef]
  10. R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, "Multi wavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples," Sens. Actuators B 14, 721-722 (1993).
    [CrossRef]
  11. J. Homola, "Optical fiber sensor based on surface plasmon excitation," Sens. Actuators B 29, 401-405 (1995).
    [CrossRef]
  12. W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, "The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor," Sens. Actuators A 84, 198-204 (2000).
    [CrossRef]
  13. A. K. Sharma and B. D. Gupta, "Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation," Sens. Actuators B 100, 423-431 (2004).
    [CrossRef]
  14. A. K. Sharma and B. D. Gupta, "On the sensitivity and signal-to-noise ratio of a step-index fiber-optic surface-plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005).
    [CrossRef]
  15. H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, "A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface-plasmon resonance," Opt. Commun. 188, 283-289 (2001).
    [CrossRef]
  16. H. P. Chiang, Y. C. Wang, and P. T. Leung, "Effect of temperature on the incident angle dependence of the sensitivity for surface plasmon resonance spectroscopy," Thin Solid Films 425, 135-138 (2003).
    [CrossRef]
  17. H. P. Chiang, P. T. Leung, and W. S. Tse, "The surface plasmon enhancement effect on absorbed molecules at elevated temperatures," J. Chem. Phys. 108, 2659-2660 (1998).
    [CrossRef]
  18. T. Holstein, "Optical and infrared volume absorptivity of metals," Phys. Rev. 96, 535-536 (1954).
    [CrossRef]
  19. J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976).
    [CrossRef]
  20. R. T. Beach and R. W. Christy, "Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au," Phys. Rev. B 16, 5277-5284 (1977).
    [CrossRef]
  21. W. E. Lawrence, "Electron-electron scattering in the low-temperature resistivity of the noble metals," Phys. Rev. B 13, 5316-5319 (1976).
    [CrossRef]
  22. S. Herminghaus and P. Leiderer, "Surface-plasmon-enhanced transient themoreflectance," Appl. Phys. A 51, 350-353 (1990).
    [CrossRef]
  23. B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005).
    [CrossRef]
  24. B. D. Gupta, A. Sharma, and C. D. Singh, "Evanescent wave absorption sensors based on uniform and tapered fibers," Int. J. Optoelectron , 8, 409-418 (1993).
  25. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

2005

A. K. Sharma and B. D. Gupta, "On the sensitivity and signal-to-noise ratio of a step-index fiber-optic surface-plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005).
[CrossRef]

B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005).
[CrossRef]

2004

A. K. Sharma and B. D. Gupta, "Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation," Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

2003

H. P. Chiang, Y. C. Wang, and P. T. Leung, "Effect of temperature on the incident angle dependence of the sensitivity for surface plasmon resonance spectroscopy," Thin Solid Films 425, 135-138 (2003).
[CrossRef]

2001

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, "A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface-plasmon resonance," Opt. Commun. 188, 283-289 (2001).
[CrossRef]

2000

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, "The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor," Sens. Actuators A 84, 198-204 (2000).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1998

S. L. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface-plasmon resonance sensors to absorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, "The surface plasmon enhancement effect on absorbed molecules at elevated temperatures," J. Chem. Phys. 108, 2659-2660 (1998).
[CrossRef]

1997

J. Homola, "On the sensitivity of surface-plasmon resonance sensors with spectral interrogation," Sens. Actuators B 41, 207-211 (1997).
[CrossRef]

Z. Salamon, H. A. Macleod, and G. Tollin, "Surface-plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles," Biochim. Biophys. Acta 1331, 117-129 (1997).
[PubMed]

1995

J. Homola, "Optical fiber sensor based on surface plasmon excitation," Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

1993

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface-plasmon resonance," Sens. Actuators B. 12, 213-220 (1993).
[CrossRef]

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, "Multi wavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples," Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

B. D. Gupta, A. Sharma, and C. D. Singh, "Evanescent wave absorption sensors based on uniform and tapered fibers," Int. J. Optoelectron , 8, 409-418 (1993).

1990

S. Herminghaus and P. Leiderer, "Surface-plasmon-enhanced transient themoreflectance," Appl. Phys. A 51, 350-353 (1990).
[CrossRef]

1983

B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

1977

R. T. Beach and R. W. Christy, "Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au," Phys. Rev. B 16, 5277-5284 (1977).
[CrossRef]

1976

W. E. Lawrence, "Electron-electron scattering in the low-temperature resistivity of the noble metals," Phys. Rev. B 13, 5316-5319 (1976).
[CrossRef]

J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976).
[CrossRef]

1972

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

1971

E. Kretchmann, "Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmashwingungen," Z. Phys. 241, 313-324 (1971).
[CrossRef]

1968

E. Kretchmann and H. Reather, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. B 23, 2135-2136 (1968).

A. Otto, "Exitation of nonradiative surface-plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

1954

T. Holstein, "Optical and infrared volume absorptivity of metals," Phys. Rev. 96, 535-536 (1954).
[CrossRef]

Beach, R. T.

R. T. Beach and R. W. Christy, "Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au," Phys. Rev. B 16, 5277-5284 (1977).
[CrossRef]

Burgess, L. W.

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, "Multi wavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples," Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

Campbell, C. T.

S. L. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface-plasmon resonance sensors to absorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Chiang, H. P.

H. P. Chiang, Y. C. Wang, and P. T. Leung, "Effect of temperature on the incident angle dependence of the sensitivity for surface plasmon resonance spectroscopy," Thin Solid Films 425, 135-138 (2003).
[CrossRef]

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, "A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface-plasmon resonance," Opt. Commun. 188, 283-289 (2001).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, "The surface plasmon enhancement effect on absorbed molecules at elevated temperatures," J. Chem. Phys. 108, 2659-2660 (1998).
[CrossRef]

Chinowsky, T. M.

S. L. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface-plasmon resonance sensors to absorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Christy, R. W.

R. T. Beach and R. W. Christy, "Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au," Phys. Rev. B 16, 5277-5284 (1977).
[CrossRef]

Gagnaire, A.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, "The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor," Sens. Actuators A 84, 198-204 (2000).
[CrossRef]

Gagnaire, H.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, "The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor," Sens. Actuators A 84, 198-204 (2000).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Gloge, D.

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Gupta, B. D.

B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005).
[CrossRef]

A. K. Sharma and B. D. Gupta, "On the sensitivity and signal-to-noise ratio of a step-index fiber-optic surface-plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005).
[CrossRef]

A. K. Sharma and B. D. Gupta, "Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation," Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

B. D. Gupta, A. Sharma, and C. D. Singh, "Evanescent wave absorption sensors based on uniform and tapered fibers," Int. J. Optoelectron , 8, 409-418 (1993).

Herminghaus, S.

S. Herminghaus and P. Leiderer, "Surface-plasmon-enhanced transient themoreflectance," Appl. Phys. A 51, 350-353 (1990).
[CrossRef]

Holstein, T.

T. Holstein, "Optical and infrared volume absorptivity of metals," Phys. Rev. 96, 535-536 (1954).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola, "On the sensitivity of surface-plasmon resonance sensors with spectral interrogation," Sens. Actuators B 41, 207-211 (1997).
[CrossRef]

J. Homola, "Optical fiber sensor based on surface plasmon excitation," Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

Jaffrezic-Renault, N.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, "The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor," Sens. Actuators A 84, 198-204 (2000).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface-plasmon resonance," Sens. Actuators B. 12, 213-220 (1993).
[CrossRef]

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, "Multi wavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples," Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

Jung, C.

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, "Multi wavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples," Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

Jung, S. L.

S. L. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface-plasmon resonance sensors to absorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Kretchmann, E.

E. Kretchmann, "Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmashwingungen," Z. Phys. 241, 313-324 (1971).
[CrossRef]

E. Kretchmann and H. Reather, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. B 23, 2135-2136 (1968).

Lawrence, W. E.

W. E. Lawrence, "Electron-electron scattering in the low-temperature resistivity of the noble metals," Phys. Rev. B 13, 5316-5319 (1976).
[CrossRef]

Leiderer, P.

S. Herminghaus and P. Leiderer, "Surface-plasmon-enhanced transient themoreflectance," Appl. Phys. A 51, 350-353 (1990).
[CrossRef]

Leung, P. T.

H. P. Chiang, Y. C. Wang, and P. T. Leung, "Effect of temperature on the incident angle dependence of the sensitivity for surface plasmon resonance spectroscopy," Thin Solid Films 425, 135-138 (2003).
[CrossRef]

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, "A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface-plasmon resonance," Opt. Commun. 188, 283-289 (2001).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, "The surface plasmon enhancement effect on absorbed molecules at elevated temperatures," J. Chem. Phys. 108, 2659-2660 (1998).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Lin, W. B.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, "The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor," Sens. Actuators A 84, 198-204 (2000).
[CrossRef]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, "Surface-plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles," Biochim. Biophys. Acta 1331, 117-129 (1997).
[PubMed]

Mar, M. N.

S. L. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface-plasmon resonance sensors to absorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

McKay, J. A.

J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Otto, A.

A. Otto, "Exitation of nonradiative surface-plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Rayne, J. A.

J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976).
[CrossRef]

Reather, H.

E. Kretchmann and H. Reather, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. B 23, 2135-2136 (1968).

Salamon, Z.

Z. Salamon, H. A. Macleod, and G. Tollin, "Surface-plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles," Biochim. Biophys. Acta 1331, 117-129 (1997).
[PubMed]

Sharma, A.

B. D. Gupta, A. Sharma, and C. D. Singh, "Evanescent wave absorption sensors based on uniform and tapered fibers," Int. J. Optoelectron , 8, 409-418 (1993).

Sharma, A. K.

A. K. Sharma and B. D. Gupta, "On the sensitivity and signal-to-noise ratio of a step-index fiber-optic surface-plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005).
[CrossRef]

B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005).
[CrossRef]

A. K. Sharma and B. D. Gupta, "Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation," Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

Singh, C. D.

B. D. Gupta, A. Sharma, and C. D. Singh, "Evanescent wave absorption sensors based on uniform and tapered fibers," Int. J. Optoelectron , 8, 409-418 (1993).

Tollin, G.

Z. Salamon, H. A. Macleod, and G. Tollin, "Surface-plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles," Biochim. Biophys. Acta 1331, 117-129 (1997).
[PubMed]

Tse, W. S.

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, "A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface-plasmon resonance," Opt. Commun. 188, 283-289 (2001).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, "The surface plasmon enhancement effect on absorbed molecules at elevated temperatures," J. Chem. Phys. 108, 2659-2660 (1998).
[CrossRef]

Wang, Y. C.

H. P. Chiang, Y. C. Wang, and P. T. Leung, "Effect of temperature on the incident angle dependence of the sensitivity for surface plasmon resonance spectroscopy," Thin Solid Films 425, 135-138 (2003).
[CrossRef]

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, "A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface-plasmon resonance," Opt. Commun. 188, 283-289 (2001).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

S. L. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface-plasmon resonance sensors to absorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, "Multi wavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples," Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface-plasmon resonance," Sens. Actuators B. 12, 213-220 (1993).
[CrossRef]

Appl. Phys. A

S. Herminghaus and P. Leiderer, "Surface-plasmon-enhanced transient themoreflectance," Appl. Phys. A 51, 350-353 (1990).
[CrossRef]

Bell Syst. Tech. J.

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Biochim. Biophys. Acta

Z. Salamon, H. A. Macleod, and G. Tollin, "Surface-plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles," Biochim. Biophys. Acta 1331, 117-129 (1997).
[PubMed]

Int. J. Optoelectron

B. D. Gupta, A. Sharma, and C. D. Singh, "Evanescent wave absorption sensors based on uniform and tapered fibers," Int. J. Optoelectron , 8, 409-418 (1993).

J. Chem. Phys.

H. P. Chiang, P. T. Leung, and W. S. Tse, "The surface plasmon enhancement effect on absorbed molecules at elevated temperatures," J. Chem. Phys. 108, 2659-2660 (1998).
[CrossRef]

Langmuir

S. L. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface-plasmon resonance sensors to absorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Opt. Commun.

A. K. Sharma and B. D. Gupta, "On the sensitivity and signal-to-noise ratio of a step-index fiber-optic surface-plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005).
[CrossRef]

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, "A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface-plasmon resonance," Opt. Commun. 188, 283-289 (2001).
[CrossRef]

Phys. Rev.

T. Holstein, "Optical and infrared volume absorptivity of metals," Phys. Rev. 96, 535-536 (1954).
[CrossRef]

Phys. Rev. B

J. A. McKay and J. A. Rayne, "Temperature dependence of the infrared absorptivity of the noble metals," Phys. Rev. B 13, 673-685 (1976).
[CrossRef]

R. T. Beach and R. W. Christy, "Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au," Phys. Rev. B 16, 5277-5284 (1977).
[CrossRef]

W. E. Lawrence, "Electron-electron scattering in the low-temperature resistivity of the noble metals," Phys. Rev. B 13, 5316-5319 (1976).
[CrossRef]

Sens. Actuators

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, "The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor," Sens. Actuators A 84, 198-204 (2000).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Sens. Actuators B

J. Homola, "On the sensitivity of surface-plasmon resonance sensors with spectral interrogation," Sens. Actuators B 41, 207-211 (1997).
[CrossRef]

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, "Multi wavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples," Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

J. Homola, "Optical fiber sensor based on surface plasmon excitation," Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

A. K. Sharma and B. D. Gupta, "Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation," Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005).
[CrossRef]

Sens. Actuators B.

R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface-plasmon resonance," Sens. Actuators B. 12, 213-220 (1993).
[CrossRef]

Thin Solid Films

H. P. Chiang, Y. C. Wang, and P. T. Leung, "Effect of temperature on the incident angle dependence of the sensitivity for surface plasmon resonance spectroscopy," Thin Solid Films 425, 135-138 (2003).
[CrossRef]

Z. Naturforsch. B

E. Kretchmann and H. Reather, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturforsch. B 23, 2135-2136 (1968).

Z. Phys.

A. Otto, "Exitation of nonradiative surface-plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

E. Kretchmann, "Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmashwingungen," Z. Phys. 241, 313-324 (1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Illustration of a fiber-optic SPR sensor; (b) N-layer model configuration to calculate the reflection coefficient (Rp ).

Fig. 2
Fig. 2

Illustration of the SPR curve with spectral interrogation.

Fig. 3
Fig. 3

Variation of transmitted power with wavelength at different temperatures. The sequence of curves from right to left is at temperatures T = 300, 375, 450, 525, and 600 K. The calculations were done for all the guided rays launched and n s     = 1.333.

Fig. 4
Fig. 4

Variation of (a) plasma frequency and (b) collision frequency with temperature for silver layer and incident wavelength of 632.8 nm.

Fig. 5
Fig. 5

Variation of (a) the real part and (b) the imaginary part of the metal–dielectric function with temperature for a silver layer and incident wavelength of 632.8 nm.

Fig. 6
Fig. 6

Variation of fiber core refractive index with wavelength at different temperatures. The fiber core was assumed to be made of silica, and the Sellmeier relation was used for the calculations.

Fig. 7
Fig. 7

Variation of incident wave vector and SP wave vector with wavelength at T = (a) 300 and (b) 600 K. The background refractive index ( n s     ) was 1.341 and the molar concentration (C) as 0.01 M. The positive thermo-optic coefficient of the sensing layer was used for the calculations.

Fig. 8
Fig. 8

Variation of sensed refractive index with temperature. The background refractive index ( n s     ) was 1.341 and the molar concentration (C) as 0.01 M. The positive thermo-optic coefficient of the sensing layer was used for the calculations.

Fig. 9
Fig. 9

Variation of (a) SNR and (b) sensitivity with temperature for positive and negative thermo-optic coefficients of sensed material. The two different background refractive index ( n s     ) values were 1.333 and 1.338. The metal layer is considered to be silver.

Fig. 10
Fig. 10

Variation of (a) SNR and (b) sensitivity with temperature for silver and gold. The two different background refractive index ( n s     ) values were 1.333 and 1.338. The positive thermo-optic coefficient of the sensing layer was used for the calculations.

Fig. 11
Fig. 11

Variation of (a) SNR and (b) sensitivity with temperature for two different cases. The two different background refractive index (ns ) values were 1.333 and 1.338. The positive thermo-optic coefficient of the sensing layer was used for the calculations. The metal layer was considered to be silver.

Fig. 12
Fig. 12

Numerical simulations for the variation of (a) SNR and (b) sensitivity with fiber length (γ z) for different values of the initial FWHM of the Gaussian input. Θ = 0.75 and fiber length (γ z) = 2.

Fig. 13
Fig. 13

Variation of (a) SNR and (b) sensitivity with temperature for different combinations of fiber length (FL = γ z) and initial FWHM of the Gaussian input. The two different background refractive index (ns ) values were 1.333 and 1.338. The positive thermo-optic coefficient of the sensing layer was used for the calculations. The metal layer consists of silver. Θ = 0.75.

Tables (3)

Tables Icon

Table 1 Parameters Used for Optical Fiber

Tables Icon

Table 2 Metal Parameters Used for the Numerical Simulation

Tables Icon

Table 3 Parameters Used for Sensing Layer

Equations (126)

Equations on this page are rendered with MathJax. Learn more.

n 1 ( λ ) = 1 + A 1 λ 2 λ 2 B 1     2 + A 2 λ 2 λ 2 B 2     2 + A 3 λ 2 λ 2 B 3     2 ,
A 1 , A 2 , A 3 , B 1 , B 2 ,   and   B 3
( in   μ m )
0.21   and   2.2 μ m
( d n / d T )
ε ( ω ) = 1 ω p     2 ω ( ω + i ω c ) ,
ω c
ω p
ω p = 4 π N e 2 m * .
m *
ω p = ω p 0 [ 1 + γ e ( T T 0 ) ] 1 / 2 ,
γ e
T 0
ω c p   and   ω c e
ω c = ω c p + ω c e .
ω c p
ω c p ( T ) = ω 0 [ 2 5 + 4 ( T T D ) 5 0 T D / T z 4 d z e z 1 ] .
E F K B T , K B T D
E F
T D
ω 0
σ ( 0 )
E F K B T , K B T D ,
ω c p ( T , ω 0 ) = ω p     2 4 π σ ( 0 ) = ω 0 [ 4 ( T T D ) 5 0 T D / T z 5 d z ( e z 1 ) ( 1 e z ) ] .
( ω ce )
E F
ω c e ( T ) = 1 6 π 4 Γ Δ h E F [ ( k B T ) 2 + ( h ω 4 π 2 ) 2 ] ,
( α )
α = α ( 1 + μ ) ( 1 μ ) ,
α
N a o
ε s ( ω ) = ε s     + N a o e 2 m e ε 0 f ( ω max 2 ω 2 i ω γ s ) ,
ω 0 = 2 π c λ max ,
ω = 2 π c λ ,
γ s = | Δ ω max | = 2 π c Δ λ max λ max               2 ,
ε s     = ( n s     ) 2 ,
N a o = 10 3 N A C ,
N A
ε s    
n s    
λ max   and   Δ λ max
ω max
( ε s i )
( ε s r ) ,
n S ( ω ) = ε s r ( ω ) .
n S
( R p )
d k
ε k
μ k
n k
Z = Z 1 = 0
Z = Z N 1
[ U 1 V 1 ] = M [ U N 1 V N 1 ] ,
U 1   and   V 1
U N 1   and   V N 1
N th
M = k = 2 N 1 M k = [ M 11 M 12 M 21 M 22 ] ,
M k = [ cos β k ( i sin β k ) / q k i q k sin β k cos β k ] ,
q k = ( μ k ε k ) 1 / 2 cos θ k = ( ε k n 1     2 sin 2 θ 1 ) 1 / 2 ε k ,
β k = 2 π λ n k cos θ k ( z k z k 1 ) = 2 π d k λ ( ε k n 1     2 sin 2 θ 1 ) 1 / 2 .
r p = ( M 11 + M 12 q N ) q 1 ( M 21 + M 22 q N ) ( M 11 + M 12 q N ) q 1 + ( M 21 + M 22 q N ) .
R p = | r p | 2 .
θ 0   and   θ 0 + d θ 0
( tan θ 0 / cos 2 θ 0 ) d θ 0
θ 0
θ = 90 ° θ I
θ I
d P n 1     2 sin θ cos θ ( 1 n 1     2 cos 2 θ ) 2 d θ .
( N ref )
( θ )
N ref = L D tan θ .
P trans
P trans = θ cr π / 2 R p N ref ( θ ) n 1     2 sin θ cos θ ( 1 n 1     2 cos 2 θ ) 2  d θ θ cr π / 2 n 1     2 sin θ cos θ ( 1 n 1     2 cos 2 θ ) 2  d θ ,
θ cr = sin 1 ( n c l n 1 )
n c l   and   n 1
P z = A θ 2 P + D 0 θ θ ( θ P θ ) ,
( θ )
( θ )
A θ 2
D 0
P = Q e γz ,
D 0 θ θ ( θ Q θ ) = ( A θ 2 γ ) Q ,
( γ )
exp ( - θ 2 / Θ 2 )
Θ = ( 4 D 0 / A ) 1 / 4 .
γ = 2 ( A D 0 ) 1 / 2 .
P i = P 0 exp ( θ 2 Θ 0     2 ) .
P ( θ , z ) = f ( z ) exp [ θ 2 Θ 2 ( z ) ] .
f ( z )   and Θ ( z )
f ( z ) = P 0 Θ 0     2 Θ     2 sinh ( γ z ) + Θ 0     2 cosh ( γ z ) ,
Θ 2 ( z ) = Θ     2 [ Θ     2 tanh ( γ z ) + Θ 0     2 Θ     2 + Θ 0     2 tanh ( γ z ) ] .
P trans ( z ) = θ c r π / 2 R P N ref ( θ ) P ( θ , z ) d θ θ c r π / 2 P ( θ , z ) d θ .
( λ res )
( n s )
K res = 2 π λ n 1 sin θ = 2 π λ ε m n S     2 ε m + n S     2 .
ε m   and   n S
λ res
λ res
δ n S
δ λ res
( S n )
S n = | δ λ res δ n s | .
1 / Δ λ 0.5
SNR = | δ λ res δ λ 0.5 | .
( ω p )
( ω c )
ω p   and   ω c
ω c
ω p
( ε m )
( ε m r )
( ε m r )
( ε m i )
( ε m i )
( n S )
n S
( 300   K )
520   nm
600   K
500   nm
n s    
( n s     )
( n s     )
( n s     )
( n s     )

Metrics