Abstract

We propose a modified algorithm for the gradient method to determine the near-edge smoke plume boundaries using backscatter signals of a scanning lidar. The running derivative of the ratio of the signal standard deviation (STD) to the accumulated sum of the STD is calculated, and the location of the global maximum of this function is found. No empirical criteria are required to determine smoke boundaries; thus the algorithm can be used without a priori selection of threshold values. The modified gradient method is not sensitive to the signal random noise at the far end of the lidar measurement range. Experimental data obtained with the Fire Sciences Laboratory lidar during routine prescribed fires in Montana were used to test the algorithm. Analysis results are presented that demonstrate the robustness of this algorithm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Crutzen, M. O. Andreae, “Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles,” Science 250, 1669–1678 (1990).
    [CrossRef] [PubMed]
  2. J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
    [CrossRef]
  3. C. M. Rogers, K. Bowman, “Transport of smoke from the Central American fires in 1998,” J. Geophys. Res. 106D, 28357–28367 (2001).
    [CrossRef]
  4. V. A. Kovalev, “Near-end solution for lidar signals containing a multiple scattering component,” Appl. Opt. 42, 7215–7224 (2003).
    [CrossRef]
  5. V. A. Kovalev, R. A. Susott, W. M. Hao, “Inversion of lidar signals from dense smokes contaminated with multiple scattering,” in Laser Radar Technology for Remote Sensing, C. Werner, ed., Proc. SPIE5240, 214–222 (2003).
    [CrossRef]
  6. S. H. Melfi, J. D. Spinhire, S. H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
    [CrossRef]
  7. R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–57 (1987).
    [CrossRef]
  8. S. R. Pal, W. Steinbrecht, A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt. 31, 1488–1494 (1992).
    [CrossRef] [PubMed]
  9. M. Del Guasta, M. Morandi, L. Stefanutti, J. Brechet, J. Piquad, “One year of cloud lidar data from Dumont D’urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
    [CrossRef]
  10. C. Flamant, J. Pelon, P. H. Flamant, P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
    [CrossRef]
  11. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
    [CrossRef] [PubMed]
  12. L. Menut, C. Flamant, J. Pelon, P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945–954 (1999).
    [CrossRef]
  13. E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
    [CrossRef]
  14. C. Kiemle, M. Kästner, G. G. Ehret, “The convective boundary layer structure from lidar and radiosonde measurements during the EFEDA ’91 campaign,” J. Atmos. Oceanic Technol. 12, 771–782 (1995).
    [CrossRef]
  15. S. A. Cohn, S. D. Mayor, C. J. Grund, T. M. Weckwerth, C. Senff, “The lidars in flat terrain (LIFT) experiment,” Bull. Am. Meteorol. Soc. 79, 1329–1343 (1998).
    [CrossRef]
  16. K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Oceanic Technol. 17, 1455–1468 (2000).
    [CrossRef]
  17. S. A. Cohn, W. M. Angevine, “Boundary-layer height and entrainment zone thickness measured by lidars and wind profiling radars,” J. Appl. Meteorol. 39, 1233–1247 (2000).
    [CrossRef]
  18. I. M. Brooks, “Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Oceanic Technol. 20, 1092–1105 (2003).
    [CrossRef]
  19. W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990–1001 (1986).
    [CrossRef]
  20. A. Piironen, E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569–25576 (1995).
    [CrossRef]
  21. V. A. Kovalev, W. E. Eichinger, Elastic Lidar. Theory, Practice, and Analysis Methods (Wiley, Hoboken, N.J., 2004), pp. 74–78.

2003 (2)

I. M. Brooks, “Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Oceanic Technol. 20, 1092–1105 (2003).
[CrossRef]

V. A. Kovalev, “Near-end solution for lidar signals containing a multiple scattering component,” Appl. Opt. 42, 7215–7224 (2003).
[CrossRef]

2002 (1)

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

2001 (2)

J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
[CrossRef]

C. M. Rogers, K. Bowman, “Transport of smoke from the Central American fires in 1998,” J. Geophys. Res. 106D, 28357–28367 (2001).
[CrossRef]

2000 (2)

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Oceanic Technol. 17, 1455–1468 (2000).
[CrossRef]

S. A. Cohn, W. M. Angevine, “Boundary-layer height and entrainment zone thickness measured by lidars and wind profiling radars,” J. Appl. Meteorol. 39, 1233–1247 (2000).
[CrossRef]

1999 (1)

1998 (1)

S. A. Cohn, S. D. Mayor, C. J. Grund, T. M. Weckwerth, C. Senff, “The lidars in flat terrain (LIFT) experiment,” Bull. Am. Meteorol. Soc. 79, 1329–1343 (1998).
[CrossRef]

1997 (2)

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[CrossRef] [PubMed]

C. Flamant, J. Pelon, P. H. Flamant, P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

1995 (2)

C. Kiemle, M. Kästner, G. G. Ehret, “The convective boundary layer structure from lidar and radiosonde measurements during the EFEDA ’91 campaign,” J. Atmos. Oceanic Technol. 12, 771–782 (1995).
[CrossRef]

A. Piironen, E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569–25576 (1995).
[CrossRef]

1993 (1)

M. Del Guasta, M. Morandi, L. Stefanutti, J. Brechet, J. Piquad, “One year of cloud lidar data from Dumont D’urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

1992 (1)

1990 (1)

P. J. Crutzen, M. O. Andreae, “Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles,” Science 250, 1669–1678 (1990).
[CrossRef] [PubMed]

1987 (1)

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–57 (1987).
[CrossRef]

1986 (1)

W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

1985 (1)

S. H. Melfi, J. D. Spinhire, S. H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Alvarado, E. C.

J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
[CrossRef]

Andreae, M. O.

P. J. Crutzen, M. O. Andreae, “Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles,” Science 250, 1669–1678 (1990).
[CrossRef] [PubMed]

Angevine, W. M.

S. A. Cohn, W. M. Angevine, “Boundary-layer height and entrainment zone thickness measured by lidars and wind profiling radars,” J. Appl. Meteorol. 39, 1233–1247 (2000).
[CrossRef]

Boers, R.

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–57 (1987).
[CrossRef]

Bowman, K.

C. M. Rogers, K. Bowman, “Transport of smoke from the Central American fires in 1998,” J. Geophys. Res. 106D, 28357–28367 (2001).
[CrossRef]

Brechet, J.

M. Del Guasta, M. Morandi, L. Stefanutti, J. Brechet, J. Piquad, “One year of cloud lidar data from Dumont D’urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

Brooks, I. M.

I. M. Brooks, “Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Oceanic Technol. 20, 1092–1105 (2003).
[CrossRef]

Bufton, J. L.

Campbell, J. R.

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

Carswell, A. I.

Carvalho, J. A.

J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
[CrossRef]

Cavanaugh, J. F.

Chou, S. H.

S. H. Melfi, J. D. Spinhire, S. H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Chudamani, S.

Cohn, S. A.

S. A. Cohn, W. M. Angevine, “Boundary-layer height and entrainment zone thickness measured by lidars and wind profiling radars,” J. Appl. Meteorol. 39, 1233–1247 (2000).
[CrossRef]

S. A. Cohn, S. D. Mayor, C. J. Grund, T. M. Weckwerth, C. Senff, “The lidars in flat terrain (LIFT) experiment,” Bull. Am. Meteorol. Soc. 79, 1329–1343 (1998).
[CrossRef]

Costa, F. S.

J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
[CrossRef]

Crutzen, P. J.

P. J. Crutzen, M. O. Andreae, “Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles,” Science 250, 1669–1678 (1990).
[CrossRef] [PubMed]

Davis, K. J.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Oceanic Technol. 17, 1455–1468 (2000).
[CrossRef]

Del Guasta, M.

M. Del Guasta, M. Morandi, L. Stefanutti, J. Brechet, J. Piquad, “One year of cloud lidar data from Dumont D’urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

Durant, P.

C. Flamant, J. Pelon, P. H. Flamant, P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

Ehret, G. G.

C. Kiemle, M. Kästner, G. G. Ehret, “The convective boundary layer structure from lidar and radiosonde measurements during the EFEDA ’91 campaign,” J. Atmos. Oceanic Technol. 12, 771–782 (1995).
[CrossRef]

Eichinger, W. E.

V. A. Kovalev, W. E. Eichinger, Elastic Lidar. Theory, Practice, and Analysis Methods (Wiley, Hoboken, N.J., 2004), pp. 74–78.

Eloranta, E.

W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

Eloranta, E. W.

A. Piironen, E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569–25576 (1995).
[CrossRef]

Flamant, C.

L. Menut, C. Flamant, J. Pelon, P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945–954 (1999).
[CrossRef]

C. Flamant, J. Pelon, P. H. Flamant, P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

Flamant, P. H.

L. Menut, C. Flamant, J. Pelon, P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945–954 (1999).
[CrossRef]

C. Flamant, J. Pelon, P. H. Flamant, P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

Flatau, P. J.

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

Gamage, N.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Oceanic Technol. 17, 1455–1468 (2000).
[CrossRef]

Gielow, R.

J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
[CrossRef]

Gordon, H. R.

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

Grund, C. J.

S. A. Cohn, S. D. Mayor, C. J. Grund, T. M. Weckwerth, C. Senff, “The lidars in flat terrain (LIFT) experiment,” Bull. Am. Meteorol. Soc. 79, 1329–1343 (1998).
[CrossRef]

Gurgel Veras, C. A.

J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
[CrossRef]

Hagelberg, C. R.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Oceanic Technol. 17, 1455–1468 (2000).
[CrossRef]

Hao, W. M.

V. A. Kovalev, R. A. Susott, W. M. Hao, “Inversion of lidar signals from dense smokes contaminated with multiple scattering,” in Laser Radar Technology for Remote Sensing, C. Werner, ed., Proc. SPIE5240, 214–222 (2003).
[CrossRef]

Hooper, W. P.

W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

Johnson, J. E.

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

Kästner, M.

C. Kiemle, M. Kästner, G. G. Ehret, “The convective boundary layer structure from lidar and radiosonde measurements during the EFEDA ’91 campaign,” J. Atmos. Oceanic Technol. 12, 771–782 (1995).
[CrossRef]

Kiemle, C.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Oceanic Technol. 17, 1455–1468 (2000).
[CrossRef]

C. Kiemle, M. Kästner, G. G. Ehret, “The convective boundary layer structure from lidar and radiosonde measurements during the EFEDA ’91 campaign,” J. Atmos. Oceanic Technol. 12, 771–782 (1995).
[CrossRef]

Kovalev, V. A.

V. A. Kovalev, “Near-end solution for lidar signals containing a multiple scattering component,” Appl. Opt. 42, 7215–7224 (2003).
[CrossRef]

V. A. Kovalev, W. E. Eichinger, Elastic Lidar. Theory, Practice, and Analysis Methods (Wiley, Hoboken, N.J., 2004), pp. 74–78.

V. A. Kovalev, R. A. Susott, W. M. Hao, “Inversion of lidar signals from dense smokes contaminated with multiple scattering,” in Laser Radar Technology for Remote Sensing, C. Werner, ed., Proc. SPIE5240, 214–222 (2003).
[CrossRef]

Lenschow, D. H.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Oceanic Technol. 17, 1455–1468 (2000).
[CrossRef]

Markowicz, K.

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

Mayor, S. D.

S. A. Cohn, S. D. Mayor, C. J. Grund, T. M. Weckwerth, C. Senff, “The lidars in flat terrain (LIFT) experiment,” Bull. Am. Meteorol. Soc. 79, 1329–1343 (1998).
[CrossRef]

Melfi, S. H.

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–57 (1987).
[CrossRef]

S. H. Melfi, J. D. Spinhire, S. H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Menut, L.

Morandi, M.

M. Del Guasta, M. Morandi, L. Stefanutti, J. Brechet, J. Piquad, “One year of cloud lidar data from Dumont D’urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

Pal, S. R.

Palm, S. P.

S. H. Melfi, J. D. Spinhire, S. H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Pelon, J.

L. Menut, C. Flamant, J. Pelon, P. H. Flamant, “Urban boundary-layer height determination from lidar measurements over the Paris area,” Appl. Opt. 38, 945–954 (1999).
[CrossRef]

C. Flamant, J. Pelon, P. H. Flamant, P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

Piironen, A.

A. Piironen, E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569–25576 (1995).
[CrossRef]

Piquad, J.

M. Del Guasta, M. Morandi, L. Stefanutti, J. Brechet, J. Piquad, “One year of cloud lidar data from Dumont D’urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

Quinn, P. K.

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

Rogers, C. M.

C. M. Rogers, K. Bowman, “Transport of smoke from the Central American fires in 1998,” J. Geophys. Res. 106D, 28357–28367 (2001).
[CrossRef]

Sandberg, D. V.

J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
[CrossRef]

Santos, J. C.

J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
[CrossRef]

Senff, C.

S. A. Cohn, S. D. Mayor, C. J. Grund, T. M. Weckwerth, C. Senff, “The lidars in flat terrain (LIFT) experiment,” Bull. Am. Meteorol. Soc. 79, 1329–1343 (1998).
[CrossRef]

Serra, A. M.

J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
[CrossRef]

Spinhire, J. D.

S. H. Melfi, J. D. Spinhire, S. H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Spinhirne, J. D.

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[CrossRef] [PubMed]

Stefanutti, L.

M. Del Guasta, M. Morandi, L. Stefanutti, J. Brechet, J. Piquad, “One year of cloud lidar data from Dumont D’urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

Steinbrecht, W.

Sullivan, P. P.

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Oceanic Technol. 17, 1455–1468 (2000).
[CrossRef]

Susott, R. A.

V. A. Kovalev, R. A. Susott, W. M. Hao, “Inversion of lidar signals from dense smokes contaminated with multiple scattering,” in Laser Radar Technology for Remote Sensing, C. Werner, ed., Proc. SPIE5240, 214–222 (2003).
[CrossRef]

Voss, K. J.

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

Weckwerth, T. M.

S. A. Cohn, S. D. Mayor, C. J. Grund, T. M. Weckwerth, C. Senff, “The lidars in flat terrain (LIFT) experiment,” Bull. Am. Meteorol. Soc. 79, 1329–1343 (1998).
[CrossRef]

Welton, E. I.

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

Appl. Opt. (4)

Boundary-Layer Meteorol. (2)

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–57 (1987).
[CrossRef]

C. Flamant, J. Pelon, P. H. Flamant, P. Durant, “Lidar determination of the entrainment zone thickness and the top of the unstable marine atmospheric boundary layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

S. A. Cohn, S. D. Mayor, C. J. Grund, T. M. Weckwerth, C. Senff, “The lidars in flat terrain (LIFT) experiment,” Bull. Am. Meteorol. Soc. 79, 1329–1343 (1998).
[CrossRef]

J. Appl. Meteorol. (1)

S. A. Cohn, W. M. Angevine, “Boundary-layer height and entrainment zone thickness measured by lidars and wind profiling radars,” J. Appl. Meteorol. 39, 1233–1247 (2000).
[CrossRef]

J. Atmos. Oceanic Technol. (3)

I. M. Brooks, “Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles,” J. Atmos. Oceanic Technol. 20, 1092–1105 (2003).
[CrossRef]

K. J. Davis, N. Gamage, C. R. Hagelberg, C. Kiemle, D. H. Lenschow, P. P. Sullivan, “An objective method for deriving atmospheric structure from airborne lidar observations,” J. Atmos. Oceanic Technol. 17, 1455–1468 (2000).
[CrossRef]

C. Kiemle, M. Kästner, G. G. Ehret, “The convective boundary layer structure from lidar and radiosonde measurements during the EFEDA ’91 campaign,” J. Atmos. Oceanic Technol. 12, 771–782 (1995).
[CrossRef]

J. Clim. Appl. Meteorol. (2)

S. H. Melfi, J. D. Spinhire, S. H. Chou, S. P. Palm, “Lidar observations of vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Clim. Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

J. Geophys. Res. (5)

A. Piironen, E. W. Eloranta, “Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25569–25576 (1995).
[CrossRef]

J. A. Carvalho, F. S. Costa, C. A. Gurgel Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, J. C. Santos, “Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil,” J. Geophys. Res. 106D, 17877–17887 (2001).
[CrossRef]

C. M. Rogers, K. Bowman, “Transport of smoke from the Central American fires in 1998,” J. Geophys. Res. 106D, 28357–28367 (2001).
[CrossRef]

E. I. Welton, K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, J. E. Johnson, “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” J. Geophys. Res. 107, 8019, (2002).
[CrossRef]

M. Del Guasta, M. Morandi, L. Stefanutti, J. Brechet, J. Piquad, “One year of cloud lidar data from Dumont D’urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575–18587 (1993).
[CrossRef]

Science (1)

P. J. Crutzen, M. O. Andreae, “Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles,” Science 250, 1669–1678 (1990).
[CrossRef] [PubMed]

Other (2)

V. A. Kovalev, R. A. Susott, W. M. Hao, “Inversion of lidar signals from dense smokes contaminated with multiple scattering,” in Laser Radar Technology for Remote Sensing, C. Werner, ed., Proc. SPIE5240, 214–222 (2003).
[CrossRef]

V. A. Kovalev, W. E. Eichinger, Elastic Lidar. Theory, Practice, and Analysis Methods (Wiley, Hoboken, N.J., 2004), pp. 74–78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Conceptual drawing for determination of the near-edge boundary between the clear air and a distant turbid layer. The shape of the synthetic range-corrected lidar signal from a clear atmosphere, which incorporates a distant turbid layer over the range from 2000 to 2600 m, is shown as curve 1 and the signal integral is shown as curve 2 (both in an arbitrary scale). The function Dsign(r) for the above signal is shown as curve 3.

Fig. 2
Fig. 2

Same range-corrected signal as that in Fig. 1 but now corrupted with artificial random noise (curve 1) and the corresponding function Dsign(r) (curve 2).

Fig. 3
Fig. 3

(a) Range-corrected signal at the azimuth ϕ = 90° as a function of the range r. The signal intensity, in arbitrary units, is shown on the left side of the panel. (b) Function Dsign(r) with negative values removed; the scale of the function is shown on the right side of the panel. The derivative for each range r is determined for five adjacent points over the range from (r − 4.8 m) to (r + 4.8 m).

Fig. 4
Fig. 4

(a) Same as in Fig. 3(a). (b) Running standard deviation of the signal, STD(r), calculated with five adjacent lines of sight. (c) Function DSTD(r) with negative values removed. The running derivative is determined similar to that in Fig. 3(b).

Fig. 5
Fig. 5

(a) Same as in Fig. 3(a) but for the azimuth at 98 deg. (b) Function DSTD(r) for the azimuth at 98 deg (only the positive values are shown).

Fig. 6
Fig. 6

Same as in Fig. 5 but for ϕ = 102 deg.

Fig. 7
Fig. 7

Same as in Fig. 5 but for ϕ = 117 deg.

Fig. 8
Fig. 8

Same as in Fig. 5 but for ϕ = 121 deg.

Fig. 9
Fig. 9

Same as in Fig. 4 but for ϕ = 106 deg.

Fig. 10
Fig. 10

Plot of the two-dimensional scan of the smoke plume under consideration. The relative amount of backscattering (not corrected for the atmospheric transmission) is defined in gray scale given on the right side. The dark structures are smoke plume areas with increased backscattering. The data points of rb retrieved with variant 2 with rmin = 50 m and δr = 360 m are shown as white squares.

Fig. 11
Fig. 11

Plot of the values of rb as a function of the azimuth ϕ over the azimuthal range from ϕ = 83 deg to ϕ = 167 deg before and after outliers were removed (the dotted curve and black squares, respectively). The three-point running fractional standard deviation of rb(ϕ) is shown as the bold curve.

Fig. 12
Fig. 12

Same as in Fig. 10 but with δr = 850 m.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D sign ( r ) = d d r [ P ( r ) r 2 r min r P ( r ) r 2 d r ] ,
D sign ( r ) = d d r { P ( r ) r 2 r min r [ P ( r ) r 2 ] } .
D STD ( r ) = d d r [ STD ( r ) r min r STD ( r ) ]

Metrics