Abstract

We focus on improvement of the retrieval of optical properties of cirrus clouds by combining two lidar methods. We retrieve the cloud’s optical depth by using independently the molecular backscattering profile below and above the cloud [molecular integration (MI) method] and the backscattering profile inside the cloud with an a priori effective lidar ratio [particle integration (PI) method]. When the MI method is reliable, the combined MI–PI method allows us to retrieve the optimal effective lidar ratio. We compare these results with Raman lidar retrievals. We then use the derived optimal effective lidar ratio for retrieval with the PI method for situations in which the MI method cannot be applied.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
    [CrossRef]
  2. G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
    [CrossRef]
  3. B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11,767–11,780 (2000).
    [CrossRef]
  4. R. S. Lindzen, M.-D. Chou, A. Y. Hou, “Does the earth have an adaptive infrared iris?” Bull. Am. Meteorol. Soc. 82, 417–432 (2001).
    [CrossRef]
  5. B. Lin, B. Wielicki, L. Chambers, Y. Hu, L.-M. Xu, “The iris hypothesis: a negative or positive cloud feedback?” J. Clim. 15, 3–7 (2001).
    [CrossRef]
  6. V. Ramanathan, W. Collins, “Thermodynamics regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El-Niño,” Nature 351, 27–32 (1991).
    [CrossRef]
  7. D. R. Dowling, L. F. Radke, “A summary of the physical properties of cirrus cloud,” J. Appl. Meteorol. 29, 970–978 (1990).
    [CrossRef]
  8. D. M. Winker, C. R. Trepte, “Laminar cirrus observed near the tropical tropopause by LITE,” Geophys. Res. Lett. 25, 3351–3354 (1998).
  9. J. B. Nee, C. N. Len, W. N. Chen, C. I. Lin, “Lidar observation of the cirrus cloud in the tropopause at Chung-Li (25°N, 121°E),” J. Atmos. Sci. 55, 2249–2257 (1998).
    [CrossRef]
  10. R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
    [CrossRef]
  11. D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
    [CrossRef]
  12. M. Haeffelin, C. Boitel, D. Bouniol, H. Chepfer, M. Chiriaco, A. Delaval, P. Drobinski, C. Goukenleuque, M. Grall, A. Hodzic, F. Hourdin, F. Lapouge, A. Mathieu, Y. Morille, C. Naud, V. Noël, J. Pelon, A. Protat, B. Romand, R. Vautard, “SIRTA, a ground-based atmospheric observatory for clouds, aerosols and water vapor,” in Vol. 37 of Notes des Activités Instrumentales (Institut Pierre-Simon Laplace, Palaiseau, Paris, 2003); available from http://www.ipsl.jussieu.fr/documentation/NAI/Notes.htm .
  13. W. E. Evans, “Remote probing of high cloud cover via satellite-borne lidar,” (NASA, Washington, D.C., 1965).
  14. C. M. R. Platt, “Lidar and radiometric observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973).
    [CrossRef]
  15. K. Labitzke, J. J. Barnett, B. Edwards, eds. Handbook MAP 16, Scientific Committee on Solar-Terrestrial Physics, (University of Illinois, Urbana, Ill., 1985).
  16. A. E. Hedin, “Extension of the MSIS thermospheric model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991).
    [CrossRef]
  17. http://nssdc.gsfc.nasa.gov/space/model/models/msis.html .
  18. S. Elouagini, P. H. Flamant, “Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds,” Appl. Opt. 35, 1512–1518 (1996).
    [CrossRef]
  19. L. Goldfarb, P. Keckhut, M.-L. Chanin, A. Hauchecorne, “Cirrus climatological results from lidar measurements at OHP (44°N, 6°E),” Geophys. Res. Lett. 28, 1687–1690 (2001).
    [CrossRef]
  20. C. M. R. Platt, A. C. Diley, “Determination of the cirrus particle single-scattering phase function from lidar and solar radiometric data,” Appl. Opt. 23, 380–386 (1984).
    [CrossRef] [PubMed]
  21. U. Wandinger, “Multiple-scattering influence on extinction-and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 47–427 (1998).
    [CrossRef]
  22. W.-N. Chen, C.-W. Chiang, J.-B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470–6476 (2002).
    [CrossRef] [PubMed]
  23. Y. Takano, K. N. Liou, “Solar radiative transfert in cirrus clouds. I. Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
    [CrossRef]
  24. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
    [CrossRef] [PubMed]
  25. A. Macke, J. Müller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
    [CrossRef]
  26. K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
    [CrossRef]
  27. Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
    [CrossRef]
  28. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  29. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef] [PubMed]
  30. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus-clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
    [CrossRef]
  31. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1990).
    [CrossRef]
  32. D. K. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, Cirrus (Oxford U. Press, Oxford, 2002), p. 198.
  33. K. Sassen, G. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Atmos. Meteorol. 31, 1275–1285 (1992).
    [CrossRef]
  34. A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
    [CrossRef]
  35. B. Cadet, L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, A. Rechou, “A subtropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set,” Geophys. Res. Lett. 30(3), (2003).
    [CrossRef]

2003 (2)

D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

B. Cadet, L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, A. Rechou, “A subtropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set,” Geophys. Res. Lett. 30(3), (2003).
[CrossRef]

2002 (1)

2001 (3)

L. Goldfarb, P. Keckhut, M.-L. Chanin, A. Hauchecorne, “Cirrus climatological results from lidar measurements at OHP (44°N, 6°E),” Geophys. Res. Lett. 28, 1687–1690 (2001).
[CrossRef]

R. S. Lindzen, M.-D. Chou, A. Y. Hou, “Does the earth have an adaptive infrared iris?” Bull. Am. Meteorol. Soc. 82, 417–432 (2001).
[CrossRef]

B. Lin, B. Wielicki, L. Chambers, Y. Hu, L.-M. Xu, “The iris hypothesis: a negative or positive cloud feedback?” J. Clim. 15, 3–7 (2001).
[CrossRef]

2000 (1)

B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11,767–11,780 (2000).
[CrossRef]

1998 (3)

U. Wandinger, “Multiple-scattering influence on extinction-and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 47–427 (1998).
[CrossRef]

D. M. Winker, C. R. Trepte, “Laminar cirrus observed near the tropical tropopause by LITE,” Geophys. Res. Lett. 25, 3351–3354 (1998).

J. B. Nee, C. N. Len, W. N. Chen, C. I. Lin, “Lidar observation of the cirrus cloud in the tropopause at Chung-Li (25°N, 121°E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

1996 (2)

S. Elouagini, P. H. Flamant, “Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds,” Appl. Opt. 35, 1512–1518 (1996).
[CrossRef]

A. Macke, J. Müller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

1995 (1)

Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
[CrossRef]

1994 (1)

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
[CrossRef]

1993 (2)

A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
[CrossRef] [PubMed]

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

1992 (2)

1991 (3)

A. E. Hedin, “Extension of the MSIS thermospheric model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991).
[CrossRef]

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

V. Ramanathan, W. Collins, “Thermodynamics regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El-Niño,” Nature 351, 27–32 (1991).
[CrossRef]

1990 (3)

D. R. Dowling, L. F. Radke, “A summary of the physical properties of cirrus cloud,” J. Appl. Meteorol. 29, 970–978 (1990).
[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1990).
[CrossRef]

1989 (1)

Y. Takano, K. N. Liou, “Solar radiative transfert in cirrus clouds. I. Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

1986 (1)

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

1984 (2)

1981 (1)

1973 (1)

C. M. R. Platt, “Lidar and radiometric observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973).
[CrossRef]

Ansmann, A.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus-clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1990).
[CrossRef]

Antill, C. W.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Baldy, S.

B. Cadet, L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, A. Rechou, “A subtropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set,” Geophys. Res. Lett. 30(3), (2003).
[CrossRef]

Baum, B. A.

B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11,767–11,780 (2000).
[CrossRef]

Blythe, M. P.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Bosenberg, J.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

Brogniez, G.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

Cadet, B.

B. Cadet, L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, A. Rechou, “A subtropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set,” Geophys. Res. Lett. 30(3), (2003).
[CrossRef]

Casas, J. C.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Chambers, L.

B. Lin, B. Wielicki, L. Chambers, Y. Hu, L.-M. Xu, “The iris hypothesis: a negative or positive cloud feedback?” J. Clim. 15, 3–7 (2001).
[CrossRef]

Chanin, M.-L.

L. Goldfarb, P. Keckhut, M.-L. Chanin, A. Hauchecorne, “Cirrus climatological results from lidar measurements at OHP (44°N, 6°E),” Geophys. Res. Lett. 28, 1687–1690 (2001).
[CrossRef]

Chen, W. N.

J. B. Nee, C. N. Len, W. N. Chen, C. I. Lin, “Lidar observation of the cirrus cloud in the tropopause at Chung-Li (25°N, 121°E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

Chen, W.-N.

Chiang, C.-W.

Cho, G. S.

K. Sassen, G. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Atmos. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

Chou, M.-D.

R. S. Lindzen, M.-D. Chou, A. Y. Hou, “Does the earth have an adaptive infrared iris?” Bull. Am. Meteorol. Soc. 82, 417–432 (2001).
[CrossRef]

Collins, W.

V. Ramanathan, W. Collins, “Thermodynamics regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El-Niño,” Nature 351, 27–32 (1991).
[CrossRef]

Couch, R. H.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Cox, J. W.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Crockett, S. K.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

DeLorme, J. F.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Diley, A. C.

Dowling, D. R.

D. R. Dowling, L. F. Radke, “A summary of the physical properties of cirrus cloud,” J. Appl. Meteorol. 29, 970–978 (1990).
[CrossRef]

Ellis, K. S.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Elouagini, S.

Elouragini, S.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

Evans, W. E.

W. E. Evans, “Remote probing of high cloud cover via satellite-borne lidar,” (NASA, Washington, D.C., 1965).

Faduilhe, D.

B. Cadet, L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, A. Rechou, “A subtropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set,” Geophys. Res. Lett. 30(3), (2003).
[CrossRef]

Fernald, F. G.

Flamant, P. H.

S. Elouagini, P. H. Flamant, “Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds,” Appl. Opt. 35, 1512–1518 (1996).
[CrossRef]

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

Flatau, P. J.

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

Giraud, V.

B. Cadet, L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, A. Rechou, “A subtropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set,” Geophys. Res. Lett. 30(3), (2003).
[CrossRef]

Goldfarb, L.

B. Cadet, L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, A. Rechou, “A subtropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set,” Geophys. Res. Lett. 30(3), (2003).
[CrossRef]

L. Goldfarb, P. Keckhut, M.-L. Chanin, A. Hauchecorne, “Cirrus climatological results from lidar measurements at OHP (44°N, 6°E),” Geophys. Res. Lett. 28, 1687–1690 (2001).
[CrossRef]

Hauchecorne, A.

L. Goldfarb, P. Keckhut, M.-L. Chanin, A. Hauchecorne, “Cirrus climatological results from lidar measurements at OHP (44°N, 6°E),” Geophys. Res. Lett. 28, 1687–1690 (2001).
[CrossRef]

Hedin, A. E.

A. E. Hedin, “Extension of the MSIS thermospheric model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991).
[CrossRef]

Hou, A. Y.

R. S. Lindzen, M.-D. Chou, A. Y. Hou, “Does the earth have an adaptive infrared iris?” Bull. Am. Meteorol. Soc. 82, 417–432 (2001).
[CrossRef]

Hu, Y.

B. Lin, B. Wielicki, L. Chambers, Y. Hu, L.-M. Xu, “The iris hypothesis: a negative or positive cloud feedback?” J. Clim. 15, 3–7 (2001).
[CrossRef]

Hu, Y. X.

B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11,767–11,780 (2000).
[CrossRef]

Hunt, W. H.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Keckhut, P.

B. Cadet, L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, A. Rechou, “A subtropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set,” Geophys. Res. Lett. 30(3), (2003).
[CrossRef]

L. Goldfarb, P. Keckhut, M.-L. Chanin, A. Hauchecorne, “Cirrus climatological results from lidar measurements at OHP (44°N, 6°E),” Geophys. Res. Lett. 28, 1687–1690 (2001).
[CrossRef]

Kitchen, W. L.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Klapheck, K.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

Klett, J. D.

Koch, M. R.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Kratz, D. P.

B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11,767–11,780 (2000).
[CrossRef]

Lahmann, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1990).
[CrossRef]

Len, C. N.

J. B. Nee, C. N. Len, W. N. Chen, C. I. Lin, “Lidar observation of the cirrus cloud in the tropopause at Chung-Li (25°N, 121°E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

Lin, B.

B. Lin, B. Wielicki, L. Chambers, Y. Hu, L.-M. Xu, “The iris hypothesis: a negative or positive cloud feedback?” J. Clim. 15, 3–7 (2001).
[CrossRef]

Lin, C. I.

J. B. Nee, C. N. Len, W. N. Chen, C. I. Lin, “Lidar observation of the cirrus cloud in the tropopause at Chung-Li (25°N, 121°E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

Lindzen, R. S.

R. S. Lindzen, M.-D. Chou, A. Y. Hou, “Does the earth have an adaptive infrared iris?” Bull. Am. Meteorol. Soc. 82, 417–432 (2001).
[CrossRef]

Linn, H.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

Liou, K. N.

Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
[CrossRef]

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfert in cirrus clouds. I. Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Lynch, D. K.

D. K. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, Cirrus (Oxford U. Press, Oxford, 2002), p. 198.

Macke, A.

A. Macke, J. Müller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
[CrossRef] [PubMed]

McCormick, M. P.

D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

Menenger, L.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

Michaelis, W.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus-clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1990).
[CrossRef]

Müller, J.

A. Macke, J. Müller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

Nee, J. B.

J. B. Nee, C. N. Len, W. N. Chen, C. I. Lin, “Lidar observation of the cirrus cloud in the tropopause at Chung-Li (25°N, 121°E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

Nee, J.-B.

Ou, S. C.

B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11,767–11,780 (2000).
[CrossRef]

Pelon, J.

D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

Platt, C. M. R.

Radke, L. F.

D. R. Dowling, L. F. Radke, “A summary of the physical properties of cirrus cloud,” J. Appl. Meteorol. 29, 970–978 (1990).
[CrossRef]

Ramanathan, V.

V. Ramanathan, W. Collins, “Thermodynamics regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El-Niño,” Nature 351, 27–32 (1991).
[CrossRef]

Raschke, E.

A. Macke, J. Müller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

Rechou, A.

B. Cadet, L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, A. Rechou, “A subtropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set,” Geophys. Res. Lett. 30(3), (2003).
[CrossRef]

Regan, C. R.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Remus, R. W.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Riebesell, M.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus-clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1990).
[CrossRef]

Rowland, C. W.

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Sassen, K.

K. Sassen, G. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Atmos. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

D. K. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, Cirrus (Oxford U. Press, Oxford, 2002), p. 198.

Snneff, C.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

Soulen, P. F.

B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11,767–11,780 (2000).
[CrossRef]

Stackhouse, P. W.

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

Starr, D. O’C.

D. K. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, Cirrus (Oxford U. Press, Oxford, 2002), p. 198.

Stephens, G.

D. K. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, Cirrus (Oxford U. Press, Oxford, 2002), p. 198.

Stephens, G. L.

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

Takano, Y.

Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
[CrossRef]

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfert in cirrus clouds. I. Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Thro, P. H.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

Trepte, C. R.

D. M. Winker, C. R. Trepte, “Laminar cirrus observed near the tropical tropopause by LITE,” Geophys. Res. Lett. 25, 3351–3354 (1998).

Tsay, S. C.

B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11,767–11,780 (2000).
[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

Voss, E.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1990).
[CrossRef]

Wandinger, U.

U. Wandinger, “Multiple-scattering influence on extinction-and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 47–427 (1998).
[CrossRef]

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus-clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1990).
[CrossRef]

Weitkamp, C.

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus-clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1990).
[CrossRef]

Wielicki, B.

B. Lin, B. Wielicki, L. Chambers, Y. Hu, L.-M. Xu, “The iris hypothesis: a negative or positive cloud feedback?” J. Clim. 15, 3–7 (2001).
[CrossRef]

Winker, D. M.

D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

D. M. Winker, C. R. Trepte, “Laminar cirrus observed near the tropical tropopause by LITE,” Geophys. Res. Lett. 25, 3351–3354 (1998).

Xu, L.-M.

B. Lin, B. Wielicki, L. Chambers, Y. Hu, L.-M. Xu, “The iris hypothesis: a negative or positive cloud feedback?” J. Clim. 15, 3–7 (2001).
[CrossRef]

Yang, P.

B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11,767–11,780 (2000).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. B (1)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1990).
[CrossRef]

Atmos. Res. (1)

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

R. S. Lindzen, M.-D. Chou, A. Y. Hou, “Does the earth have an adaptive infrared iris?” Bull. Am. Meteorol. Soc. 82, 417–432 (2001).
[CrossRef]

Geophys. Res. Lett. (3)

D. M. Winker, C. R. Trepte, “Laminar cirrus observed near the tropical tropopause by LITE,” Geophys. Res. Lett. 25, 3351–3354 (1998).

L. Goldfarb, P. Keckhut, M.-L. Chanin, A. Hauchecorne, “Cirrus climatological results from lidar measurements at OHP (44°N, 6°E),” Geophys. Res. Lett. 28, 1687–1690 (2001).
[CrossRef]

B. Cadet, L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, A. Rechou, “A subtropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set,” Geophys. Res. Lett. 30(3), (2003).
[CrossRef]

J. Appl. Meteorol. (2)

A. Ansmann, J. Bosenberg, G. Brogniez, S. Elouragini, P. H. Flamant, K. Klapheck, H. Linn, L. Menenger, W. Michaelis, M. Riebesell, C. Snneff, P. H. Thro, U. Wandinger, C. Weitkamp, “Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: the 18 October 1989 case study and statistical analysis,” J. Appl. Meteorol. 32, 1608–1622 (1993).
[CrossRef]

D. R. Dowling, L. F. Radke, “A summary of the physical properties of cirrus cloud,” J. Appl. Meteorol. 29, 970–978 (1990).
[CrossRef]

J. Atmos. Meteorol. (1)

K. Sassen, G. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Atmos. Meteorol. 31, 1275–1285 (1992).
[CrossRef]

J. Atmos. Sci. (6)

Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995).
[CrossRef]

A. Macke, J. Müller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfert in cirrus clouds. I. Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

C. M. R. Platt, “Lidar and radiometric observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973).
[CrossRef]

J. B. Nee, C. N. Len, W. N. Chen, C. I. Lin, “Lidar observation of the cirrus cloud in the tropopause at Chung-Li (25°N, 121°E),” J. Atmos. Sci. 55, 2249–2257 (1998).
[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).
[CrossRef]

J. Clim. (1)

B. Lin, B. Wielicki, L. Chambers, Y. Hu, L.-M. Xu, “The iris hypothesis: a negative or positive cloud feedback?” J. Clim. 15, 3–7 (2001).
[CrossRef]

J. Geophys. Res. (2)

B. A. Baum, D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P. F. Soulen, S. C. Tsay, “Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models,” J. Geophys. Res. 105, 11,767–11,780 (2000).
[CrossRef]

A. E. Hedin, “Extension of the MSIS thermospheric model into the middle and lower atmosphere,” J. Geophys. Res. 96, 1159–1172 (1991).
[CrossRef]

Mon. Weather Rev. (1)

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Nature (1)

V. Ramanathan, W. Collins, “Thermodynamics regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El-Niño,” Nature 351, 27–32 (1991).
[CrossRef]

Opt. Eng. (1)

R. H. Couch, C. W. Rowland, K. S. Ellis, M. P. Blythe, C. R. Regan, M. R. Koch, C. W. Antill, W. L. Kitchen, J. W. Cox, J. F. DeLorme, S. K. Crockett, R. W. Remus, J. C. Casas, W. H. Hunt, “Lidar In-space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research,” Opt. Eng. 30, 88–95 (1991).
[CrossRef]

Proc. SPIE (1)

D. M. Winker, J. Pelon, M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[CrossRef]

Other (5)

M. Haeffelin, C. Boitel, D. Bouniol, H. Chepfer, M. Chiriaco, A. Delaval, P. Drobinski, C. Goukenleuque, M. Grall, A. Hodzic, F. Hourdin, F. Lapouge, A. Mathieu, Y. Morille, C. Naud, V. Noël, J. Pelon, A. Protat, B. Romand, R. Vautard, “SIRTA, a ground-based atmospheric observatory for clouds, aerosols and water vapor,” in Vol. 37 of Notes des Activités Instrumentales (Institut Pierre-Simon Laplace, Palaiseau, Paris, 2003); available from http://www.ipsl.jussieu.fr/documentation/NAI/Notes.htm .

W. E. Evans, “Remote probing of high cloud cover via satellite-borne lidar,” (NASA, Washington, D.C., 1965).

K. Labitzke, J. J. Barnett, B. Edwards, eds. Handbook MAP 16, Scientific Committee on Solar-Terrestrial Physics, (University of Illinois, Urbana, Ill., 1985).

http://nssdc.gsfc.nasa.gov/space/model/models/msis.html .

D. K. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, Cirrus (Oxford U. Press, Oxford, 2002), p. 198.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Vertical profile extracted from the observation period in Fig. 2(a).

Fig. 2
Fig. 2

Two-dimensional plots of backscattering ratio determined from backscatter lidar measurements as functions of time and altitude for (a) 26 January 2000 OPAR and (b) 29 October 2002 SIRTA data. Measurements are 2-min averages.

Fig. 3
Fig. 3

Optical depth as a function of time for the 26 January 2000 OPAR data.

Fig. 4
Fig. 4

Comparison of optical depth retrievals from MI and PI methods for the 26 January 2000 OPAR data. Squares show the optimal effective lidar ratio of 23 sr2. Regression coefficients for the three optical depth series are shown.

Fig. 5
Fig. 5

Optical depth as a function of time for the 26 January 2000 OPAR data.

Fig. 6
Fig. 6

Comparison of optical-depth retrievals from MI and PI methods for the 29 October 2002 SIRTA data. Diamonds, all optical depth values; squares, 9.10 to 14.25 UT only. Effective lidar ratio, 10 sr. Regression coefficients for the squares are shown.

Fig. 7
Fig. 7

Optical depth as a function of time for the 29 October 2002 SIRTA data.

Fig. 8
Fig. 8

Relative difference between optical depth MI and PI retrievals as functions of PI optical depth. Statistics for (a) four sets of OPAR data and (b) three sets of SIRTA data. Each bin contains 15 optical depth values. (a) The last bin, 0.33–0.57, contains 19 values in the OPAR analysis. (b) The last bin, 0.61–1.32, contains 21 values instead of 15 in the SIRTA analysis.

Fig. 9
Fig. 9

Same as Fig. 8(a) for the relative difference between PI and NI methods for OPAR data. The last bin, 0.33–0.57, contains 16 values instead of 15.

Fig. 10
Fig. 10

Effective lidar ratio determined from a Raman signal as a function of PI optical depth. Each bin contains 15 effective lidar ratio values. The last bin, 0.33–0.57, contains 16 values instead of 15.

Tables (2)

Tables Icon

Table 1 Lidar Site Characteristics of the Two Ground-Based Lidar Systems

Tables Icon

Table 2 Correlation Coefficient r2, Optimal Effective Lidar Ratio LReffopt Determined from the MI and PI Combined Optical Depth Methods, and Standard Deviation σLReffopt Determined from the MI and PI Combined Optical Depth Methods on Each Profile for each OPAR and SIRTA Cirrus Data Set

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

τ c = z base z top α c ( z ) d z ,
LR ( z ) = α c ( z ) / β c ( z ) ,
τ c = z base z top LR ( z ) β c ( z ) d z .
τ c = LR eff z base z top β c ( z ) d z ,
R ( z ) = 1 + β c ( z ) β m ( z ) ,
τ c = LR eff z base z top [ R ( z ) - 1 ] β m ( z ) d z .
LR eff opt = a × LR eff ,

Metrics