Abstract

We demonstrate real-time two-channel self-mixing laser-Doppler measurement with extreme optical sensitivity using a laser-diode-pumped thin-slice LiNdP4O12 laser. Successful carrier-frequency-division-multiplexed two-channel operations are realized by using one laser, two sets of optical frequency shifters, and a two-channel frequency-modulated-wave demodulation circuit. Simultaneous independent measurements of vibrations of speakers and averaged motions of small Brownian particles in different scattering cells are demonstrated. Self-mixing photon correlation spectroscopy of particle size distributions is also discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Otsuka, “Effects of external perturbations on LiNdP4O12laser,” IEEE J. Quantum Electron. QE-15, 655 (1979).
    [CrossRef]
  2. P. J. de Groot, G. M. Gallatin, S. H. McOmber, “Ranging and velocimetry signal generation in a backscatter modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
    [CrossRef] [PubMed]
  3. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, “Self-mixing interference in a diode laser: experimental observation and theoretical analysis,” Appl. Opt. 32, 1551–1558 (1993).
    [CrossRef] [PubMed]
  4. K. Otsuka, R. Kawai, Y. Asakawa, T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped LiNdP4O12laser,” Opt. Lett. 24, 1862–1864 (1999).
    [CrossRef]
  5. F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41, 658–667 (2002).
    [CrossRef] [PubMed]
  6. K. Otsuka, K. Abe, J.-Y. Ko, T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 12, 1339–1341 (2002).
    [CrossRef]
  7. K. Abe, K. Otsuka, J.-Y. Ko, “Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction,” New J. Phys. 5, 8.1–8.9 (2003).
    [CrossRef]
  8. J.-Y. Ko, K. Otsuka, T. Kubota, “Quantum-noise-induced order in lasers placed in chaotic oscillation by frequency-shifted feedback,” Phys. Rev. Lett. 86, 4025–4028 (2001).
    [CrossRef] [PubMed]
  9. H. G. Winful, S. S. Wang, “Stability of phase locking in coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1894–1896 (1988).
    [CrossRef]
  10. G. Kozyreff, A. G. Vladimirov, P. Mandel, “Global coupling with time delay in an array of semiconductor lasers,” Phys. Rev. Lett. 85, 3809–3812 (2000).
    [CrossRef] [PubMed]
  11. H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
    [CrossRef]
  12. B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
  13. E. Gulari, E. Gulari, Y. Tsunashima, B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70, 3965–3972 (1979).
    [CrossRef]

2003 (1)

K. Abe, K. Otsuka, J.-Y. Ko, “Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction,” New J. Phys. 5, 8.1–8.9 (2003).
[CrossRef]

2002 (2)

2001 (1)

J.-Y. Ko, K. Otsuka, T. Kubota, “Quantum-noise-induced order in lasers placed in chaotic oscillation by frequency-shifted feedback,” Phys. Rev. Lett. 86, 4025–4028 (2001).
[CrossRef] [PubMed]

2000 (1)

G. Kozyreff, A. G. Vladimirov, P. Mandel, “Global coupling with time delay in an array of semiconductor lasers,” Phys. Rev. Lett. 85, 3809–3812 (2000).
[CrossRef] [PubMed]

1999 (1)

1993 (1)

1988 (2)

P. J. de Groot, G. M. Gallatin, S. H. McOmber, “Ranging and velocimetry signal generation in a backscatter modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
[CrossRef] [PubMed]

H. G. Winful, S. S. Wang, “Stability of phase locking in coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1894–1896 (1988).
[CrossRef]

1979 (2)

K. Otsuka, “Effects of external perturbations on LiNdP4O12laser,” IEEE J. Quantum Electron. QE-15, 655 (1979).
[CrossRef]

E. Gulari, E. Gulari, Y. Tsunashima, B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70, 3965–3972 (1979).
[CrossRef]

1964 (1)

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Abe, K.

K. Abe, K. Otsuka, J.-Y. Ko, “Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction,” New J. Phys. 5, 8.1–8.9 (2003).
[CrossRef]

K. Otsuka, K. Abe, J.-Y. Ko, T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 12, 1339–1341 (2002).
[CrossRef]

Asakawa, Y.

Berne, B. J.

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

Boyle, W. J. O.

Chu, B.

E. Gulari, E. Gulari, Y. Tsunashima, B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70, 3965–3972 (1979).
[CrossRef]

Cummins, H. Z.

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

de Groot, P. J.

de Mul, F. F. M.

Fukazawa, T.

Gallatin, G. M.

Grattan, K. T. V.

Gulari, E.

E. Gulari, E. Gulari, Y. Tsunashima, B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70, 3965–3972 (1979).
[CrossRef]

E. Gulari, E. Gulari, Y. Tsunashima, B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70, 3965–3972 (1979).
[CrossRef]

Kawai, R.

Knable, N.

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Ko, J.-Y.

K. Abe, K. Otsuka, J.-Y. Ko, “Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction,” New J. Phys. 5, 8.1–8.9 (2003).
[CrossRef]

K. Otsuka, K. Abe, J.-Y. Ko, T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 12, 1339–1341 (2002).
[CrossRef]

J.-Y. Ko, K. Otsuka, T. Kubota, “Quantum-noise-induced order in lasers placed in chaotic oscillation by frequency-shifted feedback,” Phys. Rev. Lett. 86, 4025–4028 (2001).
[CrossRef] [PubMed]

Kozyreff, G.

G. Kozyreff, A. G. Vladimirov, P. Mandel, “Global coupling with time delay in an array of semiconductor lasers,” Phys. Rev. Lett. 85, 3809–3812 (2000).
[CrossRef] [PubMed]

Kubota, T.

J.-Y. Ko, K. Otsuka, T. Kubota, “Quantum-noise-induced order in lasers placed in chaotic oscillation by frequency-shifted feedback,” Phys. Rev. Lett. 86, 4025–4028 (2001).
[CrossRef] [PubMed]

Lim, T.-S.

K. Otsuka, K. Abe, J.-Y. Ko, T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 12, 1339–1341 (2002).
[CrossRef]

Mandel, P.

G. Kozyreff, A. G. Vladimirov, P. Mandel, “Global coupling with time delay in an array of semiconductor lasers,” Phys. Rev. Lett. 85, 3809–3812 (2000).
[CrossRef] [PubMed]

McOmber, S. H.

Moes, P.

Otsuka, K.

K. Abe, K. Otsuka, J.-Y. Ko, “Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction,” New J. Phys. 5, 8.1–8.9 (2003).
[CrossRef]

K. Otsuka, K. Abe, J.-Y. Ko, T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 12, 1339–1341 (2002).
[CrossRef]

J.-Y. Ko, K. Otsuka, T. Kubota, “Quantum-noise-induced order in lasers placed in chaotic oscillation by frequency-shifted feedback,” Phys. Rev. Lett. 86, 4025–4028 (2001).
[CrossRef] [PubMed]

K. Otsuka, R. Kawai, Y. Asakawa, T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped LiNdP4O12laser,” Opt. Lett. 24, 1862–1864 (1999).
[CrossRef]

K. Otsuka, “Effects of external perturbations on LiNdP4O12laser,” IEEE J. Quantum Electron. QE-15, 655 (1979).
[CrossRef]

Pecora, R.

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

Petoukhova, A. L.

Scalise, L.

Steenbergen, W.

Tsunashima, Y.

E. Gulari, E. Gulari, Y. Tsunashima, B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70, 3965–3972 (1979).
[CrossRef]

van Herwijnen, M.

Vladimirov, A. G.

G. Kozyreff, A. G. Vladimirov, P. Mandel, “Global coupling with time delay in an array of semiconductor lasers,” Phys. Rev. Lett. 85, 3809–3812 (2000).
[CrossRef] [PubMed]

Wang, S. S.

H. G. Winful, S. S. Wang, “Stability of phase locking in coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1894–1896 (1988).
[CrossRef]

Wang, W. M.

Winful, H. G.

H. G. Winful, S. S. Wang, “Stability of phase locking in coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1894–1896 (1988).
[CrossRef]

Yeh, Y.

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

H. G. Winful, S. S. Wang, “Stability of phase locking in coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1894–1896 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Otsuka, “Effects of external perturbations on LiNdP4O12laser,” IEEE J. Quantum Electron. QE-15, 655 (1979).
[CrossRef]

J. Chem. Phys. (1)

E. Gulari, E. Gulari, Y. Tsunashima, B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70, 3965–3972 (1979).
[CrossRef]

New J. Phys. (1)

K. Abe, K. Otsuka, J.-Y. Ko, “Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction,” New J. Phys. 5, 8.1–8.9 (2003).
[CrossRef]

Opt. Lett. (2)

K. Otsuka, K. Abe, J.-Y. Ko, T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 12, 1339–1341 (2002).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped LiNdP4O12laser,” Opt. Lett. 24, 1862–1864 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

G. Kozyreff, A. G. Vladimirov, P. Mandel, “Global coupling with time delay in an array of semiconductor lasers,” Phys. Rev. Lett. 85, 3809–3812 (2000).
[CrossRef] [PubMed]

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

J.-Y. Ko, K. Otsuka, T. Kubota, “Quantum-noise-induced order in lasers placed in chaotic oscillation by frequency-shifted feedback,” Phys. Rev. Lett. 86, 4025–4028 (2001).
[CrossRef] [PubMed]

Other (1)

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup of two-channel self-mixing laser-Doppler measurements: LNP, LiNdP4O12 laser; AOM, PbMoO4 acousto-optic modulators (Hoya Schott A-150; 80-MHz central frequency); PD, InGaAs photodiode receiver (New Focus 1811; DC −125 MHz); DO, digital oscilloscope (Tektronix TDS 540D; DC −500 MHz); SA, spectrum analyzer (Tektronix 3026; DC −3 GHz); FMD, two-channel FM-wave demodulation circuit; PC, personal computer.

Fig. 2
Fig. 2

Example power spectrum of the modulated signal and demodulated output voltages, modulation frequency fm = 914 Hz: (a) power spectrum of modulated signal, (b) magnified view around fc,2 = 3.5 MHz, and (c) demodulated voltages of two channels.

Fig. 3
Fig. 3

Vibration amplitude versus voltage applied to the speaker. Modulation frequency fm = 8 kHz.

Fig. 4
Fig. 4

(a) Vibration waveform obtained for the laser mirror on the piezoelectric element with the sinusoidal voltage of 10 V at 5 kHz being applied. (b) Vibration amplitude versus voltage to the piezoelectric element. The calibration curve obtained by the capacitive displacement sensor is given by the dashed line.

Fig. 5
Fig. 5

Numerical results for two-channel operations. (a) Power spectrum of the modulated signal, (b) magnified view around fc,2 = 3.5 MHz, and (c) vibration waveforms. Parameters are given in the text.

Fig. 6
Fig. 6

Simultaneous measurement of averaged motions of Brownian particles distributed in water in different scattering cells: (a) Power spectrum of modulated signal for 207-nm spherical polystyrene latex, (b) magnified view around fc,2 = 3.5 MHz, and (c) demodulated voltages. The Lorentzian curve of best fit is shown by the solid curve in (b). A positive voltage (displacement) implies that a “virtual particle” is moving toward the laser. Carrier frequencies of two channels are the same as Fig. 2, and the amplifier’s gain was increased more than the case of Fig. 2 to increase the demodulated output voltages.

Fig. 7
Fig. 7

Averaged motions of Brownian particles of different diameters.

Fig. 8
Fig. 8

Power spectra of modulated outputs for particles of different diameters. Each power spectrum was obtained by averaging 100-power spectra on the spectrum analyzer.

Fig. 9
Fig. 9

(a) Normalized “net” autocorrelation function G(2)(τ) calculated from the averaged power spectrum of modulated signal for 207-nm polystyrene latex in water assuming α = 1. (b) Probability distribution of linewidths G(Γ). (c) Histogram of particle sizes.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d N ( t ) / d t = { w - 1 - N ( t ) - [ 1 + 2 N ( t ) ] E ( t ) 2 } / K ,
d E ( t ) / d t = N ( t ) E ( t ) + m E ( t - t D ) Σ cos Ψ k ( t ) + { 2 ɛ [ N ( t ) + 1 ] } 1 / 2 ξ ( t ) ,
d ϕ ( t ) / d t = m [ E ( t - t D ) / E ( t ) ] Σ sin Ψ k ( t ) ,
Ψ k ( t ) = Δ Ω k t + β sin Ω m , k t - ϕ ( t ) + ϕ ( t - t D ) - ( Ω o + Δ Ω k / 2 ) t D , k = 1 , 2 , , n .
PSD = 10 log [ R Q ( ω - 2 ω AOM ) 2 + Q 2 ] ,             Q = k 2 D .
g ( 1 ) ( τ ) = G ( Γ ) exp ( - Γ τ ) d Γ = [ G ( 2 ) ( τ ) ] 1 / 2 ,
G ( 2 ) ( τ ) = [ g ( 2 ) ( τ ) - B ] / α ,

Metrics