Abstract

The design, fabrication, and characterization of large, two-dimensional multiple-quantum-well modulator arrays are presented. Such arrays present a speed advantage compared with competing technologies such as liquid crystals and micromirrors, which are intrinsically limited to the kilohertz range. We discuss the design compromises to reach high-contrast, low-voltage swing optical structures compatible with complementary metal-oxide semiconductor-based integrated circuits and present experimental results. Contrast ratio of 5:1 (limited by the fill factor), variations in uniformity below 1 nm, and frame rates in excess of 10 kHz are demonstrated. Technology maturity for volume production is also discussed.

© 2005 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription