Abstract

The design, fabrication, and characterization of large, two-dimensional multiple-quantum-well modulator arrays are presented. Such arrays present a speed advantage compared with competing technologies such as liquid crystals and micromirrors, which are intrinsically limited to the kilohertz range. We discuss the design compromises to reach high-contrast, low-voltage swing optical structures compatible with complementary metal-oxide semiconductor-based integrated circuits and present experimental results. Contrast ratio of 5:1 (limited by the fill factor), variations in uniformity below 1 nm, and frame rates in excess of 10 kHz are demonstrated. Technology maturity for volume production is also discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Kirsch, B. K. Jones, K. Kang, “Design and evaluation of a multiple quantum well SLM based optical correlator,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 66–71 (2000).
    [CrossRef]
  2. M. J. O’Callaghan, S. H. Pelmutter, B. Wolt, “Single-chip correlator implementation for PCI-bus personal computers,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 48–58 (2000).
    [CrossRef]
  3. U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003).
    [CrossRef]
  4. A. G. Kirk, D. V. Plant, T. H. Szymanski, Z. G. Vranesic, F. A. P. Tooley, D. R. Rolston, M. H. Ayliffe, F. K. Lacroix, B. Robertson, E. Bernier, D. F. Brosseau, “Design and implementation of a modulator-based free-space optical backplane for multiprocessor applications,” Appl. Opt. 42, 2465–2481 (2003).
    [CrossRef] [PubMed]
  5. J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, J. S. Harris, “High contrast asymetric Fabry–Perot electroabsorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
    [CrossRef]
  6. J. A. Trezza, J. S. Harris, “Creation and optimization of vertical cavity phase flip modulators,” J. Appl. Phys. 75, 4878–4884 (1994).
    [CrossRef]
  7. B. Noharet, S. Junique, “Multiple quantum well spatial light modulators for correlation-based processors,” in Optoelectronic Information Processing: Optics for Information Systems, P. Réfrégier, B. Javidi, C. Ferreira, S. Vallmitjana, eds. (SPIE, Bellingham, Wash., 2001), pp. 314–364.
  8. R. Spickermann, N. Dagli, M. G. Peters, “GaAs/AlGaAs electro-optic modulator with bandwidth 40 GHz,” Electron. Lett. 31, 915–916 (1995).
    [CrossRef]
  9. F. Devaux, P. Bordes, A. Ougazzaden, M. Carré, F. Huet, “Experimental optimisation of MQW electroabsorption modulators with up to 40 GHz bandwidths,” Electron. Lett. 30, 1347–1348 (1994).
    [CrossRef]
  10. Hong Liu, Chien-Chung Lin, J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40, 1186–1191 (2001).
    [CrossRef]
  11. K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
    [CrossRef]
  12. U. Efron, G. Livescu, “Multiple quantum well spatial light modulators,” in Spatial Light Modulator Technology: Materials, Devices, and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 217–286.
  13. T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large array of spatial light modulators hybridized to silicon integrated circuit,” Appl. Opt. 35, 1180–1186 (1996).
    [CrossRef] [PubMed]
  14. J. A. Trezza, J. S. Powell, C. Garvin, K. Kang, R. Stack, “Creation and application of very large format, high fill factor GaAs-on-CMOS binary and gray scale modulator and emitter arrays,” in Optics in Computing, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 78–81 (1998).
    [CrossRef]
  15. S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
    [CrossRef]
  16. K.-K. Law, J. L. Merz, L. A. Coldren, “Effect of layer thickness variations on the performance of asymetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
    [CrossRef]
  17. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, Bristol, 2001).
    [CrossRef]
  18. G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, “Exciton binding energy in quantum wells,” Phys. Rev. B 26, 1974–1979 (1982).
    [CrossRef]
  19. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Éditions de Physique, Paris, 1988), see in particular pp. 308–317.
  20. Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).
  21. H. Malm, C. Asplund, S. Becanovic, J. Borgling, A. Parekh, B. Hirschauer, “Advanced process control for high quality R&D and production of MOVPE material by RealTemp,” J. Crystal Growth 248, 229–234 (2003).
    [CrossRef]
  22. R. Pässler, G. Oelgart, “Appropriate analytical description of the temperature dependence of exciton peak positions in GaAs/Alx Gax−1As multiple quantum wells and the Γ8v–Γ6c gap of GaAs,” J. Appl. Phys. 82, 2611–2616 (1997).
    [CrossRef]
  23. J. Talghader, J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
    [CrossRef]
  24. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R180 (1982).
    [CrossRef]

2003 (4)

U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003).
[CrossRef]

A. G. Kirk, D. V. Plant, T. H. Szymanski, Z. G. Vranesic, F. A. P. Tooley, D. R. Rolston, M. H. Ayliffe, F. K. Lacroix, B. Robertson, E. Bernier, D. F. Brosseau, “Design and implementation of a modulator-based free-space optical backplane for multiprocessor applications,” Appl. Opt. 42, 2465–2481 (2003).
[CrossRef] [PubMed]

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

H. Malm, C. Asplund, S. Becanovic, J. Borgling, A. Parekh, B. Hirschauer, “Advanced process control for high quality R&D and production of MOVPE material by RealTemp,” J. Crystal Growth 248, 229–234 (2003).
[CrossRef]

2001 (1)

Hong Liu, Chien-Chung Lin, J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40, 1186–1191 (2001).
[CrossRef]

1997 (1)

R. Pässler, G. Oelgart, “Appropriate analytical description of the temperature dependence of exciton peak positions in GaAs/Alx Gax−1As multiple quantum wells and the Γ8v–Γ6c gap of GaAs,” J. Appl. Phys. 82, 2611–2616 (1997).
[CrossRef]

1996 (1)

1995 (3)

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

R. Spickermann, N. Dagli, M. G. Peters, “GaAs/AlGaAs electro-optic modulator with bandwidth 40 GHz,” Electron. Lett. 31, 915–916 (1995).
[CrossRef]

J. Talghader, J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[CrossRef]

1994 (2)

J. A. Trezza, J. S. Harris, “Creation and optimization of vertical cavity phase flip modulators,” J. Appl. Phys. 75, 4878–4884 (1994).
[CrossRef]

F. Devaux, P. Bordes, A. Ougazzaden, M. Carré, F. Huet, “Experimental optimisation of MQW electroabsorption modulators with up to 40 GHz bandwidths,” Electron. Lett. 30, 1347–1348 (1994).
[CrossRef]

1993 (1)

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, J. S. Harris, “High contrast asymetric Fabry–Perot electroabsorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

1992 (1)

K.-K. Law, J. L. Merz, L. A. Coldren, “Effect of layer thickness variations on the performance of asymetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
[CrossRef]

1982 (2)

G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, “Exciton binding energy in quantum wells,” Phys. Rev. B 26, 1974–1979 (1982).
[CrossRef]

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R180 (1982).
[CrossRef]

Ågren, D.

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

Andersson, J. Y.

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

Arad, U.

U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003).
[CrossRef]

Asplund, C.

H. Malm, C. Asplund, S. Becanovic, J. Borgling, A. Parekh, B. Hirschauer, “Advanced process control for high quality R&D and production of MOVPE material by RealTemp,” J. Crystal Growth 248, 229–234 (2003).
[CrossRef]

Averboukh, A.

U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003).
[CrossRef]

Ayliffe, M. H.

Bacon, D. D.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Bastard, G.

G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, “Exciton binding energy in quantum wells,” Phys. Rev. B 26, 1974–1979 (1982).
[CrossRef]

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Éditions de Physique, Paris, 1988), see in particular pp. 308–317.

Becanovic, S.

H. Malm, C. Asplund, S. Becanovic, J. Borgling, A. Parekh, B. Hirschauer, “Advanced process control for high quality R&D and production of MOVPE material by RealTemp,” J. Crystal Growth 248, 229–234 (2003).
[CrossRef]

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

berg, O.

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

Bernier, E.

Blakemore, J. S.

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R180 (1982).
[CrossRef]

Bordes, P.

F. Devaux, P. Bordes, A. Ougazzaden, M. Carré, F. Huet, “Experimental optimisation of MQW electroabsorption modulators with up to 40 GHz bandwidths,” Electron. Lett. 30, 1347–1348 (1994).
[CrossRef]

Borglind, J.

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

Borgling, J.

H. Malm, C. Asplund, S. Becanovic, J. Borgling, A. Parekh, B. Hirschauer, “Advanced process control for high quality R&D and production of MOVPE material by RealTemp,” J. Crystal Growth 248, 229–234 (2003).
[CrossRef]

Brosseau, D. F.

Carré, M.

F. Devaux, P. Bordes, A. Ougazzaden, M. Carré, F. Huet, “Experimental optimisation of MQW electroabsorption modulators with up to 40 GHz bandwidths,” Electron. Lett. 30, 1347–1348 (1994).
[CrossRef]

Chang, L. L.

G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, “Exciton binding energy in quantum wells,” Phys. Rev. B 26, 1974–1979 (1982).
[CrossRef]

Chirovsky, L. M. F.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Coldren, L. A.

K.-K. Law, J. L. Merz, L. A. Coldren, “Effect of layer thickness variations on the performance of asymetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
[CrossRef]

D’Araso, L. A.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Dagli, N.

R. Spickermann, N. Dagli, M. G. Peters, “GaAs/AlGaAs electro-optic modulator with bandwidth 40 GHz,” Electron. Lett. 31, 915–916 (1995).
[CrossRef]

Dahringer, D.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Devaux, F.

F. Devaux, P. Bordes, A. Ougazzaden, M. Carré, F. Huet, “Experimental optimisation of MQW electroabsorption modulators with up to 40 GHz bandwidths,” Electron. Lett. 30, 1347–1348 (1994).
[CrossRef]

Efron, U.

U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003).
[CrossRef]

U. Efron, G. Livescu, “Multiple quantum well spatial light modulators,” in Spatial Light Modulator Technology: Materials, Devices, and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 217–286.

Esaki, L.

G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, “Exciton binding energy in quantum wells,” Phys. Rev. B 26, 1974–1979 (1982).
[CrossRef]

Garvin, C.

J. A. Trezza, J. S. Powell, C. Garvin, K. Kang, R. Stack, “Creation and application of very large format, high fill factor GaAs-on-CMOS binary and gray scale modulator and emitter arrays,” in Optics in Computing, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 78–81 (1998).
[CrossRef]

Goossen, K. W.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Guo, J.

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

Harris, J. S.

Hong Liu, Chien-Chung Lin, J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40, 1186–1191 (2001).
[CrossRef]

J. A. Trezza, J. S. Harris, “Creation and optimization of vertical cavity phase flip modulators,” J. Appl. Phys. 75, 4878–4884 (1994).
[CrossRef]

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, J. S. Harris, “High contrast asymetric Fabry–Perot electroabsorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

Hirschauer, B.

H. Malm, C. Asplund, S. Becanovic, J. Borgling, A. Parekh, B. Hirschauer, “Advanced process control for high quality R&D and production of MOVPE material by RealTemp,” J. Crystal Growth 248, 229–234 (2003).
[CrossRef]

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

Höglund, L.

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

Huet, F.

F. Devaux, P. Bordes, A. Ougazzaden, M. Carré, F. Huet, “Experimental optimisation of MQW electroabsorption modulators with up to 40 GHz bandwidths,” Electron. Lett. 30, 1347–1348 (1994).
[CrossRef]

Hui, S. P.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Jones, B. K.

J. C. Kirsch, B. K. Jones, K. Kang, “Design and evaluation of a multiple quantum well SLM based optical correlator,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 66–71 (2000).
[CrossRef]

Junique, S.

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

B. Noharet, S. Junique, “Multiple quantum well spatial light modulators for correlation-based processors,” in Optoelectronic Information Processing: Optics for Information Systems, P. Réfrégier, B. Javidi, C. Ferreira, S. Vallmitjana, eds. (SPIE, Bellingham, Wash., 2001), pp. 314–364.

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

Kang, K.

J. A. Trezza, J. S. Powell, C. Garvin, K. Kang, R. Stack, “Creation and application of very large format, high fill factor GaAs-on-CMOS binary and gray scale modulator and emitter arrays,” in Optics in Computing, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 78–81 (1998).
[CrossRef]

J. C. Kirsch, B. K. Jones, K. Kang, “Design and evaluation of a multiple quantum well SLM based optical correlator,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 66–71 (2000).
[CrossRef]

Kirk, A. G.

Kirsch, J. C.

J. C. Kirsch, B. K. Jones, K. Kang, “Design and evaluation of a multiple quantum well SLM based optical correlator,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 66–71 (2000).
[CrossRef]

Kossive, D.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Lacroix, F. K.

Lane, B.

Larson, M. C.

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, J. S. Harris, “High contrast asymetric Fabry–Perot electroabsorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

Law, K.-K.

K.-K. Law, J. L. Merz, L. A. Coldren, “Effect of layer thickness variations on the performance of asymetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
[CrossRef]

Leibenguth, R.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Lentine, A. L.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Levit, S.

U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003).
[CrossRef]

Lin, Chien-Chung

Hong Liu, Chien-Chung Lin, J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40, 1186–1191 (2001).
[CrossRef]

Liu, Hong

Hong Liu, Chien-Chung Lin, J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40, 1186–1191 (2001).
[CrossRef]

Livescu, G.

U. Efron, G. Livescu, “Multiple quantum well spatial light modulators,” in Spatial Light Modulator Technology: Materials, Devices, and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 217–286.

Lord, S. M.

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, J. S. Harris, “High contrast asymetric Fabry–Perot electroabsorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, Bristol, 2001).
[CrossRef]

Malm, H.

H. Malm, C. Asplund, S. Becanovic, J. Borgling, A. Parekh, B. Hirschauer, “Advanced process control for high quality R&D and production of MOVPE material by RealTemp,” J. Crystal Growth 248, 229–234 (2003).
[CrossRef]

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

Martijn, H. H.

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

Martin, R.

Mendez, E. E.

G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, “Exciton binding energy in quantum wells,” Phys. Rev. B 26, 1974–1979 (1982).
[CrossRef]

Merz, J. L.

K.-K. Law, J. L. Merz, L. A. Coldren, “Effect of layer thickness variations on the performance of asymetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
[CrossRef]

Miller, D. A. B.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Noharet, B.

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

B. Noharet, S. Junique, “Multiple quantum well spatial light modulators for correlation-based processors,” in Optoelectronic Information Processing: Optics for Information Systems, P. Réfrégier, B. Javidi, C. Ferreira, S. Vallmitjana, eds. (SPIE, Bellingham, Wash., 2001), pp. 314–364.

O’Callaghan, M. J.

M. J. O’Callaghan, S. H. Pelmutter, B. Wolt, “Single-chip correlator implementation for PCI-bus personal computers,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 48–58 (2000).
[CrossRef]

Öberg, O.

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

Oelgart, G.

R. Pässler, G. Oelgart, “Appropriate analytical description of the temperature dependence of exciton peak positions in GaAs/Alx Gax−1As multiple quantum wells and the Γ8v–Γ6c gap of GaAs,” J. Appl. Phys. 82, 2611–2616 (1997).
[CrossRef]

Ougazzaden, A.

F. Devaux, P. Bordes, A. Ougazzaden, M. Carré, F. Huet, “Experimental optimisation of MQW electroabsorption modulators with up to 40 GHz bandwidths,” Electron. Lett. 30, 1347–1348 (1994).
[CrossRef]

Parekh, A.

H. Malm, C. Asplund, S. Becanovic, J. Borgling, A. Parekh, B. Hirschauer, “Advanced process control for high quality R&D and production of MOVPE material by RealTemp,” J. Crystal Growth 248, 229–234 (2003).
[CrossRef]

Pässler, R.

R. Pässler, G. Oelgart, “Appropriate analytical description of the temperature dependence of exciton peak positions in GaAs/Alx Gax−1As multiple quantum wells and the Γ8v–Γ6c gap of GaAs,” J. Appl. Phys. 82, 2611–2616 (1997).
[CrossRef]

Pelmutter, S. H.

M. J. O’Callaghan, S. H. Pelmutter, B. Wolt, “Single-chip correlator implementation for PCI-bus personal computers,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 48–58 (2000).
[CrossRef]

Peters, M. G.

R. Spickermann, N. Dagli, M. G. Peters, “GaAs/AlGaAs electro-optic modulator with bandwidth 40 GHz,” Electron. Lett. 31, 915–916 (1995).
[CrossRef]

Petrini, E.

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

Pezeshki, B.

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, J. S. Harris, “High contrast asymetric Fabry–Perot electroabsorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

Plant, D. V.

Powell, J. S.

J. A. Trezza, J. S. Powell, C. Garvin, K. Kang, R. Stack, “Creation and application of very large format, high fill factor GaAs-on-CMOS binary and gray scale modulator and emitter arrays,” in Optics in Computing, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 78–81 (1998).
[CrossRef]

Redmard, E.

U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003).
[CrossRef]

Ritter, K. J.

Robertson, B.

Rolston, D. R.

Shamay, M.

U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003).
[CrossRef]

Smith, J. S.

J. Talghader, J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[CrossRef]

Spickermann, R.

R. Spickermann, N. Dagli, M. G. Peters, “GaAs/AlGaAs electro-optic modulator with bandwidth 40 GHz,” Electron. Lett. 31, 915–916 (1995).
[CrossRef]

Stack, R.

J. A. Trezza, J. S. Powell, C. Garvin, K. Kang, R. Stack, “Creation and application of very large format, high fill factor GaAs-on-CMOS binary and gray scale modulator and emitter arrays,” in Optics in Computing, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 78–81 (1998).
[CrossRef]

Szymanski, T. H.

Talghader, J.

J. Talghader, J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[CrossRef]

Tooley, F. A. P.

Trezza, J. A.

J. A. Trezza, J. S. Harris, “Creation and optimization of vertical cavity phase flip modulators,” J. Appl. Phys. 75, 4878–4884 (1994).
[CrossRef]

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, J. S. Harris, “High contrast asymetric Fabry–Perot electroabsorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

J. A. Trezza, J. S. Powell, C. Garvin, K. Kang, R. Stack, “Creation and application of very large format, high fill factor GaAs-on-CMOS binary and gray scale modulator and emitter arrays,” in Optics in Computing, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 78–81 (1998).
[CrossRef]

Tseng, B.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Vranesic, Z. G.

Walker, J. A.

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Wang, Q.

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

Wang, Qin

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

Wolt, B.

M. J. O’Callaghan, S. H. Pelmutter, B. Wolt, “Single-chip correlator implementation for PCI-bus personal computers,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 48–58 (2000).
[CrossRef]

Worchesky, T. L.

Acta Opt. Sinica (1)

Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, J. S. Harris, “High contrast asymetric Fabry–Perot electroabsorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993).
[CrossRef]

J. Talghader, J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995).
[CrossRef]

Electron. Lett. (2)

R. Spickermann, N. Dagli, M. G. Peters, “GaAs/AlGaAs electro-optic modulator with bandwidth 40 GHz,” Electron. Lett. 31, 915–916 (1995).
[CrossRef]

F. Devaux, P. Bordes, A. Ougazzaden, M. Carré, F. Huet, “Experimental optimisation of MQW electroabsorption modulators with up to 40 GHz bandwidths,” Electron. Lett. 30, 1347–1348 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003).
[CrossRef]

J. Appl. Phys. (4)

R. Pässler, G. Oelgart, “Appropriate analytical description of the temperature dependence of exciton peak positions in GaAs/Alx Gax−1As multiple quantum wells and the Γ8v–Γ6c gap of GaAs,” J. Appl. Phys. 82, 2611–2616 (1997).
[CrossRef]

J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R180 (1982).
[CrossRef]

K.-K. Law, J. L. Merz, L. A. Coldren, “Effect of layer thickness variations on the performance of asymetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992).
[CrossRef]

J. A. Trezza, J. S. Harris, “Creation and optimization of vertical cavity phase flip modulators,” J. Appl. Phys. 75, 4878–4884 (1994).
[CrossRef]

J. Crystal Growth (1)

H. Malm, C. Asplund, S. Becanovic, J. Borgling, A. Parekh, B. Hirschauer, “Advanced process control for high quality R&D and production of MOVPE material by RealTemp,” J. Crystal Growth 248, 229–234 (2003).
[CrossRef]

Opt. Eng. (1)

Hong Liu, Chien-Chung Lin, J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40, 1186–1191 (2001).
[CrossRef]

Phys. Rev. B (1)

G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, “Exciton binding energy in quantum wells,” Phys. Rev. B 26, 1974–1979 (1982).
[CrossRef]

Other (8)

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Éditions de Physique, Paris, 1988), see in particular pp. 308–317.

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, Bristol, 2001).
[CrossRef]

U. Efron, G. Livescu, “Multiple quantum well spatial light modulators,” in Spatial Light Modulator Technology: Materials, Devices, and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 217–286.

J. A. Trezza, J. S. Powell, C. Garvin, K. Kang, R. Stack, “Creation and application of very large format, high fill factor GaAs-on-CMOS binary and gray scale modulator and emitter arrays,” in Optics in Computing, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 78–81 (1998).
[CrossRef]

S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001).
[CrossRef]

J. C. Kirsch, B. K. Jones, K. Kang, “Design and evaluation of a multiple quantum well SLM based optical correlator,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 66–71 (2000).
[CrossRef]

M. J. O’Callaghan, S. H. Pelmutter, B. Wolt, “Single-chip correlator implementation for PCI-bus personal computers,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 48–58 (2000).
[CrossRef]

B. Noharet, S. Junique, “Multiple quantum well spatial light modulators for correlation-based processors,” in Optoelectronic Information Processing: Optics for Information Systems, P. Réfrégier, B. Javidi, C. Ferreira, S. Vallmitjana, eds. (SPIE, Bellingham, Wash., 2001), pp. 314–364.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(A) Device structure as grown. (B) Device detail after the optical chip has been flip-chip bonded on its integrated circuit driver and the GaAs substrate has been removed. The leftmost pixel is short circuited by a metal layer (in gray) running down to the n-doped region and is used as the n-type common contact. To its right, two other pixels are shown with their individual p-type contact.

Fig. 2
Fig. 2

Block diagram of the integrated-circuit driver designed to drive a 128 × 128 pixel modulator array with a 38-μm pixel pitch.

Fig. 3
Fig. 3

Measured reflectivity versus wavelength at various voltage biases at the device center.

Fig. 4
Fig. 4

Position of the Fabry–Perot cavity versus the horizontal position on the chip for three lines parallel to the pixel rows: at 1.5 mm from the top edge, in the middle of the chip, and at 1.5 mm from the bottom edge.

Fig. 5
Fig. 5

Reflected optical power versus bias voltage measured at the chip center and at the two corners where the cavity position is most extreme. Arrows show the bias voltages that should be used to have five gray levels through the device. For each gray level, a rectangles indicates the minimum and maximum reflected power. The insert shows ten consecutive measurements at the central point, illustrating the repeatability of the method.

Fig. 6
Fig. 6

(a) Close-up on the SLM displaying a square pattern and (b) microscope picture of a group of pixels, before flip-chip bonding to the integrated-circuit driver.

Fig. 7
Fig. 7

Optical modulation obtained by illuminating the whole SLM area and sending alternating black-and-white images to it at the maximum speed supported by the computer interface. The FrameSync displays a peak every time the image is updated on the SLM. A frame rate of 11700 fps is obtained with no sign of RC limitation.

Fig. 8
Fig. 8

Dependence of the cavity position in a Fabry–Perot resonator on the angle of incidence of the illumination. If the cavity is at a certain position with an angle of incidence θ0, θ1 is the incidence needed to shift to the same place a cavity that is 1.2% thicker. The smaller (θ1 − θo) is, the more sensitive the resonator is, and the smaller the variation in incidence to correct for a thicker cavity.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n d = k λ 0 2 ,
δ ( λ 0 ) λ 0 = δ ( d ) d + δ ( n ) n ,
d ( θ m ) = d 0 cos θ m ,
n 0 sin θ = n 1 sin θ m ,

Metrics