Abstract

We discuss a new type of deformable mirror made from nanoengineered reflective layers deposited onto liquids. The surfaces are shaped by heating with a laser. The response times of the deformed surfaces are slow (>1 s). Simplicity and low cost appear to be the main advantages of thermally deformable liquid mirrors.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Beckers, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 31, 12–62 (1993).
    [CrossRef]
  2. H. Hofer, P. Artal, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]
  3. L. Girard, E. F. Borra, “Optical tests of a 2.5-m diameter liquid mirror. II. Behavior under external perturbations and scattered light measurements,” Appl. Opt. 36, 6278–6288 (1997).
    [CrossRef]
  4. G. Tremblay, E. F. Borra, “Optical tests of a 3.7-m diameter liquid mirror: behavior under external perturbations,” Appl. Opt. 39, 5651–5662 (2000).
    [CrossRef]
  5. R. J. Sica, S. Sargoytchev, E. F. Borra, L. Girard, S. Argall, C. T. Sarrow, S. Flatt, “Lidar measurements taken with a large aperture liquid mirror. 1. The Rayleigh-scatter system,” Appl. Opt. 34, 6925–6936 (1995).
    [CrossRef] [PubMed]
  6. P. Hickson, M. Mulrooney, “University of British Columbia–NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35–42 (1998).
    [CrossRef]
  7. R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
    [CrossRef]
  8. E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, H. Yockell-Lelievre, “Nanoengineered astronomical optics,” Astron. Astrophys. 419, 777–782 (2004).
    [CrossRef]
  9. H. Benard, “Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent,” Ann. Chim. Phys. 23, 62–144 (1901).
  10. J. C. Berg, A. Acrivos, M. Boudiart, “Evaporative convection,” Adv. Chem. Eng. 6, 61–124 (1966).
    [CrossRef]
  11. C. Normand, Y. Pomeau, M. G. Velarde, “Convective instability: a physicist’s approach,” Rev. Mod. Phys. 49, 581–624 (1977).
    [CrossRef]
  12. G. Da Costa, “All optical light switch using interaction between low power light beams in a liquid film,” Opt. Eng. 25, 1058–1063 (1986).
    [CrossRef]
  13. G. Da Costa, “Time evolution of the caustics of a laser-heated liquid film,” Appl. Opt. 29, 1023–1033 (1990).
    [CrossRef] [PubMed]
  14. L. Landau, E. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959), pp. 236–237.
  15. M. I. Cohen, in Laser Handbook, F. T. Arecchi, E. O. DuBois, eds. (North-Holland, Amsterdam, 1972), pp. 1586–1587.
  16. E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
    [CrossRef]
  17. D. Yogev, S. Efrima, “Novel silver metal like films,” J. Phys. Chem. 92, 5754–5760 (1988).
    [CrossRef]
  18. K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
    [CrossRef]
  19. H. Yockell-Lelièvre, E. F. Borra, A. Ritcey, L. Vieira da Silva, “Optical tests of nanoengineered liquid mirrors,” Appl. Opt. 42, 1882–1887 (2003).
    [CrossRef] [PubMed]
  20. W. V. Meyer, G. H. Wegdam, D. Fenistein, J. A. Mann, “Advances in surface-light-scattering instrumentation and analysis: noninvasive measuring of surface tension, viscosity, and other interfacial parameters,” Appl. Opt. 40, 4113–4133 (2001).
    [CrossRef]
  21. I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
    [CrossRef]

2004

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, H. Yockell-Lelievre, “Nanoengineered astronomical optics,” Astron. Astrophys. 419, 777–782 (2004).
[CrossRef]

2003

2001

2000

1999

E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
[CrossRef]

1998

P. Hickson, M. Mulrooney, “University of British Columbia–NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35–42 (1998).
[CrossRef]

R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
[CrossRef]

1997

1995

1993

J. M. Beckers, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 31, 12–62 (1993).
[CrossRef]

1992

I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
[CrossRef]

1990

1989

K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
[CrossRef]

1988

D. Yogev, S. Efrima, “Novel silver metal like films,” J. Phys. Chem. 92, 5754–5760 (1988).
[CrossRef]

1986

G. Da Costa, “All optical light switch using interaction between low power light beams in a liquid film,” Opt. Eng. 25, 1058–1063 (1986).
[CrossRef]

1977

C. Normand, Y. Pomeau, M. G. Velarde, “Convective instability: a physicist’s approach,” Rev. Mod. Phys. 49, 581–624 (1977).
[CrossRef]

1966

J. C. Berg, A. Acrivos, M. Boudiart, “Evaporative convection,” Adv. Chem. Eng. 6, 61–124 (1966).
[CrossRef]

1901

H. Benard, “Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent,” Ann. Chim. Phys. 23, 62–144 (1901).

Acrivos, A.

J. C. Berg, A. Acrivos, M. Boudiart, “Evaporative convection,” Adv. Chem. Eng. 6, 61–124 (1966).
[CrossRef]

Aragon, J. L.

Argall, S.

Artal, P.

Artigau, E.

E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
[CrossRef]

Beauchemin, M.

R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
[CrossRef]

Beckers, J. M.

J. M. Beckers, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 31, 12–62 (1993).
[CrossRef]

Benard, H.

H. Benard, “Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent,” Ann. Chim. Phys. 23, 62–144 (1901).

Berg, J. C.

J. C. Berg, A. Acrivos, M. Boudiart, “Evaporative convection,” Adv. Chem. Eng. 6, 61–124 (1966).
[CrossRef]

Bergamasco, R.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, H. Yockell-Lelievre, “Nanoengineered astronomical optics,” Astron. Astrophys. 419, 777–782 (2004).
[CrossRef]

Borra, E. F.

Boudiart, M.

J. C. Berg, A. Acrivos, M. Boudiart, “Evaporative convection,” Adv. Chem. Eng. 6, 61–124 (1966).
[CrossRef]

Cabanac, R.

R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
[CrossRef]

Cohen, M. I.

M. I. Cohen, in Laser Handbook, F. T. Arecchi, E. O. DuBois, eds. (North-Holland, Amsterdam, 1972), pp. 1586–1587.

Da Costa, G.

G. Da Costa, “Time evolution of the caustics of a laser-heated liquid film,” Appl. Opt. 29, 1023–1033 (1990).
[CrossRef] [PubMed]

G. Da Costa, “All optical light switch using interaction between low power light beams in a liquid film,” Opt. Eng. 25, 1058–1063 (1986).
[CrossRef]

Da Silva, L.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, H. Yockell-Lelievre, “Nanoengineered astronomical optics,” Astron. Astrophys. 419, 777–782 (2004).
[CrossRef]

Dallaire, M.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, H. Yockell-Lelievre, “Nanoengineered astronomical optics,” Astron. Astrophys. 419, 777–782 (2004).
[CrossRef]

Efrima, S.

I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
[CrossRef]

D. Yogev, S. Efrima, “Novel silver metal like films,” J. Phys. Chem. 92, 5754–5760 (1988).
[CrossRef]

Farbman, I. W.

I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
[CrossRef]

Fenistein, D.

Flatt, S.

Gingras, J.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, H. Yockell-Lelievre, “Nanoengineered astronomical optics,” Astron. Astrophys. 419, 777–782 (2004).
[CrossRef]

Girard, L.

Gordon, K. C.

K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
[CrossRef]

Hickson, P.

P. Hickson, M. Mulrooney, “University of British Columbia–NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35–42 (1998).
[CrossRef]

Hofer, H.

Laird, P.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, H. Yockell-Lelievre, “Nanoengineered astronomical optics,” Astron. Astrophys. 419, 777–782 (2004).
[CrossRef]

Landau, L.

L. Landau, E. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959), pp. 236–237.

Levi, O.

I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
[CrossRef]

Lifshitz, E.

L. Landau, E. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959), pp. 236–237.

Mann, J. A.

McGarvey, J. J.

K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
[CrossRef]

Meyer, W. V.

Mulrooney, M.

P. Hickson, M. Mulrooney, “University of British Columbia–NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35–42 (1998).
[CrossRef]

Normand, C.

C. Normand, Y. Pomeau, M. G. Velarde, “Convective instability: a physicist’s approach,” Rev. Mod. Phys. 49, 581–624 (1977).
[CrossRef]

Pomeau, Y.

C. Normand, Y. Pomeau, M. G. Velarde, “Convective instability: a physicist’s approach,” Rev. Mod. Phys. 49, 581–624 (1977).
[CrossRef]

Ritcey, A.

Ritcey, A. M.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, H. Yockell-Lelievre, “Nanoengineered astronomical optics,” Astron. Astrophys. 419, 777–782 (2004).
[CrossRef]

E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
[CrossRef]

Sargoytchev, S.

Sarrow, C. T.

Sica, R. J.

Taylor, K. P.

K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
[CrossRef]

Tremblay, G.

Velarde, M. G.

C. Normand, Y. Pomeau, M. G. Velarde, “Convective instability: a physicist’s approach,” Rev. Mod. Phys. 49, 581–624 (1977).
[CrossRef]

Vieira da Silva, L.

Wegdam, G. H.

Williams, D. R.

Yockell-Lelievre, H.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, H. Yockell-Lelievre, “Nanoengineered astronomical optics,” Astron. Astrophys. 419, 777–782 (2004).
[CrossRef]

Yockell-Lelièvre, H.

Yogev, D.

D. Yogev, S. Efrima, “Novel silver metal like films,” J. Phys. Chem. 92, 5754–5760 (1988).
[CrossRef]

Adv. Chem. Eng.

J. C. Berg, A. Acrivos, M. Boudiart, “Evaporative convection,” Adv. Chem. Eng. 6, 61–124 (1966).
[CrossRef]

Ann. Chim. Phys.

H. Benard, “Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent,” Ann. Chim. Phys. 23, 62–144 (1901).

Annu. Rev. Astron. Astrophys.

J. M. Beckers, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 31, 12–62 (1993).
[CrossRef]

Appl. Opt.

Astron. Astrophys.

E. F. Borra, A. M. Ritcey, R. Bergamasco, P. Laird, J. Gingras, M. Dallaire, L. Da Silva, H. Yockell-Lelievre, “Nanoengineered astronomical optics,” Astron. Astrophys. 419, 777–782 (2004).
[CrossRef]

Astrophys. J.

R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
[CrossRef]

Astrophys. J. Lett.

E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
[CrossRef]

Astrophys. J. Suppl.

P. Hickson, M. Mulrooney, “University of British Columbia–NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35–42 (1998).
[CrossRef]

J. Chem. Phys.

I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem.

D. Yogev, S. Efrima, “Novel silver metal like films,” J. Phys. Chem. 92, 5754–5760 (1988).
[CrossRef]

K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
[CrossRef]

Opt. Eng.

G. Da Costa, “All optical light switch using interaction between low power light beams in a liquid film,” Opt. Eng. 25, 1058–1063 (1986).
[CrossRef]

Rev. Mod. Phys.

C. Normand, Y. Pomeau, M. G. Velarde, “Convective instability: a physicist’s approach,” Rev. Mod. Phys. 49, 581–624 (1977).
[CrossRef]

Other

L. Landau, E. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959), pp. 236–237.

M. I. Cohen, in Laser Handbook, F. T. Arecchi, E. O. DuBois, eds. (North-Holland, Amsterdam, 1972), pp. 1586–1587.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical influence function obtained for a coated silicon oil sample with added pigment. The units of the scales are micrometers. The bump has a peak amplitude of 0.44 μm and a FWHM of 3.6 mm.

Fig. 2
Fig. 2

Amplitude of the peak of the influence function as a function of the time obtained for coated silicon oil that measures the deformation of the surface. The laser was turned on for a and turned off for b. The FWHM of the deformations was 4.0 mm and did not vary significantly with time.

Fig. 3
Fig. 3

Amplitude of the peak of the influence function as function of the time obtained for coated paraffin that measures the deformation of the surface. The laser was turned on for a and turned off for b. The FWHM of the deformations was 4.5 mm and did not vary significantly with time.

Fig. 4
Fig. 4

Amplitude of the peak of the influence function obtained for coated pigmented silicon oil that measures the deformation of the surface. The laser was turned on for a and turned off for b. We introduced a dark pigment into our substrates to test the effect of increased absorbance. The FWHM was 3.7 mm and did not vary with time.

Fig. 5
Fig. 5

Amplitude of the peak of the influence function obtained for a coated ferrofluid substrate that measures the deformation of the surface. The laser was turned on for a and turned off for b. The FWHM was 4.9 mm and did not vary significantly with time.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y 2 y 0 2 ( ρ 0 ρ ) 3 / 4 + 3 ρ g ( α - α 0 ) ,
ρ ( T ) = ρ 0 + ( ρ T ) T = T 0 × ( T - T 0 ) ,
α ( T ) = α 0 + ( α T ) T = T 0 × ( T - T 0 ) ,
( T - T 0 ) = Q 0 a 2 4 k y 0 { - E i [ - ( x / a ) 2 1 + ( 4 κ t / a 2 ) ] + E i [ - ( x a ) 2 ] } ,

Metrics