Abstract

Joint fuel Raman and filtered Rayleigh-scattering (FRS) imaging is demonstrated in a laminar methane–air diffusion flame. These experiments are, to our knowledge, the first reported extension of the FRS technique to nonpremixed combustion. This joint imaging approach allows for correction of the FRS images for the large variations in Rayleigh cross section that occur in diffusion flames and for a secondary measurement of fuel mole fraction. The temperature-dependent filtered Rayleigh cross sections are computed with a six-moment kinetic model for calculation of major-species Rayleigh–Brillouin line shapes and a flamelet-based model for physically judicious estimates of gas-phase chemical composition. Shot-averaged temperatures, fuel mole fractions, and fuel number densities from steady and vortex-strained diffusion flames stabilized on a Wolfhard–Parker slot burner are presented, and a detailed uncertainty analysis reveals that the FRS-measured temperatures are accurate to within ±4.5 to 6% of the local absolute temperature.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities,” paper AIAA-92-3894, presented at the 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).
  2. G. S. Elliott, N. Glumac, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
    [CrossRef]
  3. G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
    [CrossRef]
  4. D. Most, A. Leipertz, “Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle-image velocimetry and filtered Rayleigh scattering technique,” Appl. Opt. 40, 5379–5387 (2001).
    [CrossRef]
  5. D. Hoffman, K. U. Munch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
    [CrossRef] [PubMed]
  6. S. P. Kearney, T. W. Grasser, S. J. Beresh, “Filtered Rayleigh scattering thermometry in a premixed sooting flame,” presented at the American Society of Mechanical Engineers Joint Heat Transfer and Fluids Engineering Joint Summer Conference, Charlotte, N.C., 11–15 July 2004, ASME Paper HT-FED 2004-56894.
  7. S. H. Starner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh imaging method,” Combust. Flame 99, 347–354 (1994).
    [CrossRef]
  8. S. H. Starner, R. W. Bilger, J. H. Frank, D. F. Marran, M. B. Long, “Mixture fraction imaging in a lifted methane jet flame,” Combust. Flame 107, 307–313 (1996).
    [CrossRef]
  9. S. H. Starner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air-diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
    [CrossRef]
  10. Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
    [CrossRef]
  11. V. Ghaem-Maghami, A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
    [CrossRef]
  12. V. Ghaem-Maghami, A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. II. The hydrodynamic region,” Phys. Rev. A 22, 698–705 (1980).
    [CrossRef]
  13. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  14. N. Peters, Turbulent Combustion (Cambridge U. Press, Cambridge, UK, 2000).
    [CrossRef]
  15. S. Gerstenkorn, P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
    [CrossRef]
  16. C. D. Carter, “Laser-based Rayleigh and Mie scattering methods,” in Handbook of Fluid Dynamics and Fluid Machinery, J. A. Schetz, A. E. Fuhs, eds. (Wiley, New York, 1996), pp. 1078–1093.
  17. J. P. Boon, S. J. Yip, Molecular Hydrodynamics (Dover, Mineola, N.Y., 1991).
  18. K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
    [CrossRef]
  19. C. J. Mueller, R. W. Schefer, “Coupling of diffusion flame structure to an unsteady vortical flowfield,” in the Twenty-Seventh Symposium plus CDROM (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1105–1112.
  20. D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
    [CrossRef]
  21. S. H. Starner, R. W. Bilger, M. B. Long, “A method for contour-aligned smoothing of joint 2D scalar images in turbulent flames,” Combust. Sci. Technol. 107, 195–203 (1995).
    [CrossRef]
  22. S. J. Chen, J. A. Silver, W. J. A. Dahm, N. D. Piltch, “Mixture fraction measurements via WMS/ITAC in a laminar diffusion flame,” in the Twenty-Ninth Symposium (International) of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002), pp. 1–10.
  23. S. J. Kline, F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mech. Eng. 75, 3–8 (1953).
  24. W. R. Fenner, H. A. Hyatt, J. M. Kellam, S. P. S. Porto, “Raman cross sections of some simple gases,” J. Opt. Soc. Am. 63, 73–77 (1973).
    [CrossRef]
  25. C. M. Penney, R. L. S. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
    [CrossRef]
  26. W. P. Stricker, “Measurement of temperature in laboratory flames,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), p. 173.

2001 (2)

1997 (2)

G. S. Elliott, N. Glumac, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

S. H. Starner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air-diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

1996 (2)

S. H. Starner, R. W. Bilger, J. H. Frank, D. F. Marran, M. B. Long, “Mixture fraction imaging in a lifted methane jet flame,” Combust. Flame 107, 307–313 (1996).
[CrossRef]

D. Hoffman, K. U. Munch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
[CrossRef] [PubMed]

1995 (1)

S. H. Starner, R. W. Bilger, M. B. Long, “A method for contour-aligned smoothing of joint 2D scalar images in turbulent flames,” Combust. Sci. Technol. 107, 195–203 (1995).
[CrossRef]

1994 (1)

S. H. Starner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

1986 (1)

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
[CrossRef]

1985 (1)

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

1980 (2)

V. Ghaem-Maghami, A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

V. Ghaem-Maghami, A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. II. The hydrodynamic region,” Phys. Rev. A 22, 698–705 (1980).
[CrossRef]

1979 (1)

S. Gerstenkorn, P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

1976 (1)

Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

1974 (2)

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

C. M. Penney, R. L. S. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
[CrossRef]

1973 (1)

1953 (1)

S. J. Kline, F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mech. Eng. 75, 3–8 (1953).

Beresh, S. J.

S. P. Kearney, T. W. Grasser, S. J. Beresh, “Filtered Rayleigh scattering thermometry in a premixed sooting flame,” presented at the American Society of Mechanical Engineers Joint Heat Transfer and Fluids Engineering Joint Summer Conference, Charlotte, N.C., 11–15 July 2004, ASME Paper HT-FED 2004-56894.

Bilger, R. W.

S. H. Starner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air-diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

S. H. Starner, R. W. Bilger, J. H. Frank, D. F. Marran, M. B. Long, “Mixture fraction imaging in a lifted methane jet flame,” Combust. Flame 107, 307–313 (1996).
[CrossRef]

S. H. Starner, R. W. Bilger, M. B. Long, “A method for contour-aligned smoothing of joint 2D scalar images in turbulent flames,” Combust. Sci. Technol. 107, 195–203 (1995).
[CrossRef]

S. H. Starner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

Boley, C. D.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Boon, J. P.

J. P. Boon, S. J. Yip, Molecular Hydrodynamics (Dover, Mineola, N.Y., 1991).

Carter, C. D.

G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

G. S. Elliott, N. Glumac, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

C. D. Carter, “Laser-based Rayleigh and Mie scattering methods,” in Handbook of Fluid Dynamics and Fluid Machinery, J. A. Schetz, A. E. Fuhs, eds. (Wiley, New York, 1996), pp. 1078–1093.

Chen, S. J.

S. J. Chen, J. A. Silver, W. J. A. Dahm, N. D. Piltch, “Mixture fraction measurements via WMS/ITAC in a laminar diffusion flame,” in the Twenty-Ninth Symposium (International) of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002), pp. 1–10.

Chu, B.

Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Dahm, W. J. A.

S. J. Chen, J. A. Silver, W. J. A. Dahm, N. D. Piltch, “Mixture fraction measurements via WMS/ITAC in a laminar diffusion flame,” in the Twenty-Ninth Symposium (International) of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002), pp. 1–10.

Desai, R. C.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Dorfman, R. C.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Elliott, G. S.

G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

G. S. Elliott, N. Glumac, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

Fenner, W. R.

Forkey, J. N.

R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities,” paper AIAA-92-3894, presented at the 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

Fourguette, D. C.

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
[CrossRef]

Frank, J. H.

S. H. Starner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air-diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

S. H. Starner, R. W. Bilger, J. H. Frank, D. F. Marran, M. B. Long, “Mixture fraction imaging in a lifted methane jet flame,” Combust. Flame 107, 307–313 (1996).
[CrossRef]

S. H. Starner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

Ghaem-Maghami, V.

V. Ghaem-Maghami, A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

V. Ghaem-Maghami, A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. II. The hydrodynamic region,” Phys. Rev. A 22, 698–705 (1980).
[CrossRef]

Glumac, N.

G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

G. S. Elliott, N. Glumac, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

Grasser, T. W.

S. P. Kearney, T. W. Grasser, S. J. Beresh, “Filtered Rayleigh scattering thermometry in a premixed sooting flame,” presented at the American Society of Mechanical Engineers Joint Heat Transfer and Fluids Engineering Joint Summer Conference, Charlotte, N.C., 11–15 July 2004, ASME Paper HT-FED 2004-56894.

Hoffman, D.

Hyatt, H. A.

Kearney, S. P.

S. P. Kearney, T. W. Grasser, S. J. Beresh, “Filtered Rayleigh scattering thermometry in a premixed sooting flame,” presented at the American Society of Mechanical Engineers Joint Heat Transfer and Fluids Engineering Joint Summer Conference, Charlotte, N.C., 11–15 July 2004, ASME Paper HT-FED 2004-56894.

Kellam, J. M.

Kline, S. J.

S. J. Kline, F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mech. Eng. 75, 3–8 (1953).

Lao, Q. H.

Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Lapp, M.

Leipertz, A.

Lempert, W. R.

R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities,” paper AIAA-92-3894, presented at the 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

Long, M. B.

S. H. Starner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air-diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

S. H. Starner, R. W. Bilger, J. H. Frank, D. F. Marran, M. B. Long, “Mixture fraction imaging in a lifted methane jet flame,” Combust. Flame 107, 307–313 (1996).
[CrossRef]

S. H. Starner, R. W. Bilger, M. B. Long, “A method for contour-aligned smoothing of joint 2D scalar images in turbulent flames,” Combust. Sci. Technol. 107, 195–203 (1995).
[CrossRef]

S. H. Starner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
[CrossRef]

Luc, P.

S. Gerstenkorn, P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

Lyons, K. M.

S. H. Starner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

Mallard, W. G.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Marran, D. F.

S. H. Starner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air-diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

S. H. Starner, R. W. Bilger, J. H. Frank, D. F. Marran, M. B. Long, “Mixture fraction imaging in a lifted methane jet flame,” Combust. Flame 107, 307–313 (1996).
[CrossRef]

May, A. D.

V. Ghaem-Maghami, A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

V. Ghaem-Maghami, A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. II. The hydrodynamic region,” Phys. Rev. A 22, 698–705 (1980).
[CrossRef]

McClintock, F. A.

S. J. Kline, F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mech. Eng. 75, 3–8 (1953).

Miles, R. B.

R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities,” paper AIAA-92-3894, presented at the 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

Miller, J. H.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Most, D.

Mueller, C. J.

C. J. Mueller, R. W. Schefer, “Coupling of diffusion flame structure to an unsteady vortical flowfield,” in the Twenty-Seventh Symposium plus CDROM (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1105–1112.

Munch, K. U.

Nejad, A. S.

G. S. Elliott, N. Glumac, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

Penney, C. M.

Peters, N.

N. Peters, Turbulent Combustion (Cambridge U. Press, Cambridge, UK, 2000).
[CrossRef]

Peters, R. L. S.

Piltch, N. D.

S. J. Chen, J. A. Silver, W. J. A. Dahm, N. D. Piltch, “Mixture fraction measurements via WMS/ITAC in a laminar diffusion flame,” in the Twenty-Ninth Symposium (International) of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002), pp. 1–10.

Porto, S. P. S.

Santoro, R. J.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Schefer, R. W.

C. J. Mueller, R. W. Schefer, “Coupling of diffusion flame structure to an unsteady vortical flowfield,” in the Twenty-Seventh Symposium plus CDROM (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1105–1112.

Schoen, P. E.

Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Silver, J. A.

S. J. Chen, J. A. Silver, W. J. A. Dahm, N. D. Piltch, “Mixture fraction measurements via WMS/ITAC in a laminar diffusion flame,” in the Twenty-Ninth Symposium (International) of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002), pp. 1–10.

Smyth, K. C.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Starner, S. H.

S. H. Starner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air-diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

S. H. Starner, R. W. Bilger, J. H. Frank, D. F. Marran, M. B. Long, “Mixture fraction imaging in a lifted methane jet flame,” Combust. Flame 107, 307–313 (1996).
[CrossRef]

S. H. Starner, R. W. Bilger, M. B. Long, “A method for contour-aligned smoothing of joint 2D scalar images in turbulent flames,” Combust. Sci. Technol. 107, 195–203 (1995).
[CrossRef]

S. H. Starner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

Stricker, W. P.

W. P. Stricker, “Measurement of temperature in laboratory flames,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), p. 173.

Tenti, G.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Yip, S. J.

J. P. Boon, S. J. Yip, Molecular Hydrodynamics (Dover, Mineola, N.Y., 1991).

Zurn, R. M.

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
[CrossRef]

Appl. Opt. (1)

Can. J. Phys. (1)

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Combust. Flame (3)

S. H. Starner, R. W. Bilger, K. M. Lyons, J. H. Frank, M. B. Long, “Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh imaging method,” Combust. Flame 99, 347–354 (1994).
[CrossRef]

S. H. Starner, R. W. Bilger, J. H. Frank, D. F. Marran, M. B. Long, “Mixture fraction imaging in a lifted methane jet flame,” Combust. Flame 107, 307–313 (1996).
[CrossRef]

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985).
[CrossRef]

Combust. Sci. Technol. (4)

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-dimensional Rayleigh thermometry in a turbulent nonpremixed methane-hydrogen flame,” Combust. Sci. Technol. 44, 307–317 (1986).
[CrossRef]

S. H. Starner, R. W. Bilger, M. B. Long, “A method for contour-aligned smoothing of joint 2D scalar images in turbulent flames,” Combust. Sci. Technol. 107, 195–203 (1995).
[CrossRef]

G. S. Elliott, N. Glumac, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–369 (1997).
[CrossRef]

S. H. Starner, R. W. Bilger, M. B. Long, J. H. Frank, D. F. Marran, “Scalar dissipation measurements in turbulent jet diffusion flames of air-diluted methane and hydrogen,” Combust. Sci. Technol. 129, 141–163 (1997).
[CrossRef]

J. Chem. Phys. (1)

Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

J. Opt. Soc. Am. (2)

Meas. Sci. Technol. (1)

G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Mech. Eng. (1)

S. J. Kline, F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mech. Eng. 75, 3–8 (1953).

Opt. Lett. (1)

Phys. Rev. A (2)

V. Ghaem-Maghami, A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

V. Ghaem-Maghami, A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. II. The hydrodynamic region,” Phys. Rev. A 22, 698–705 (1980).
[CrossRef]

Rev. Phys. Appl. (1)

S. Gerstenkorn, P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

Other (8)

C. D. Carter, “Laser-based Rayleigh and Mie scattering methods,” in Handbook of Fluid Dynamics and Fluid Machinery, J. A. Schetz, A. E. Fuhs, eds. (Wiley, New York, 1996), pp. 1078–1093.

J. P. Boon, S. J. Yip, Molecular Hydrodynamics (Dover, Mineola, N.Y., 1991).

N. Peters, Turbulent Combustion (Cambridge U. Press, Cambridge, UK, 2000).
[CrossRef]

R. B. Miles, J. N. Forkey, W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities,” paper AIAA-92-3894, presented at the 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 1992 (American Institute of Aeronautics and Astronautics, Reston, Va., 1992).

W. P. Stricker, “Measurement of temperature in laboratory flames,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus, J. B. Jeffries, eds. (Taylor & Francis, New York, 2002), p. 173.

S. J. Chen, J. A. Silver, W. J. A. Dahm, N. D. Piltch, “Mixture fraction measurements via WMS/ITAC in a laminar diffusion flame,” in the Twenty-Ninth Symposium (International) of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002), pp. 1–10.

C. J. Mueller, R. W. Schefer, “Coupling of diffusion flame structure to an unsteady vortical flowfield,” in the Twenty-Seventh Symposium plus CDROM (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1105–1112.

S. P. Kearney, T. W. Grasser, S. J. Beresh, “Filtered Rayleigh scattering thermometry in a premixed sooting flame,” presented at the American Society of Mechanical Engineers Joint Heat Transfer and Fluids Engineering Joint Summer Conference, Charlotte, N.C., 11–15 July 2004, ASME Paper HT-FED 2004-56894.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

FRS working principle. Rayleigh–Brillouin-scattering line shapes for nitrogen are plotted for three temperatures alongside the measured transmission of our I2 molecular filter and a qualitative representation of the seeded Nd:YAG laser line shape.

Fig. 2
Fig. 2

Calculated dependence of the gas mixture FRS cross section on mixture fraction for a 67% N2 and 33% CH4 fuel–air diffusion flame. These cross sections were computed with the measured iodine filter transmission shown in Fig. 1.

Fig. 3
Fig. 3

Schematic of the FRS optical arrangement for combustion temperature imaging. DAQ, data acquisition.

Fig. 4
Fig. 4

Processed FRS and Raman signal data from a N2-diluted CH4 fuel–air slot diffusion flame. (a) Normalized FRS image data; (b) unsmoothed and (c) contour-smoothed Raman image data, scaled to yield a CH4 number density. The FRS data were averaged over 100 laser shots, and the Raman data were averaged over 200 laser shots.

Fig. 5
Fig. 5

Horizontal profiles of the processed Raman signals extracted from the raw and contour-smoothed Raman image data in Figs. 4(b) and 4(c). The estimated SNR for the Raman data is plotted on the right-hand axis for reference.

Fig. 6
Fig. 6

Flamelet data used to interpret the joint FRS–Raman images from a two-dimensional slot diffusion flame. (a) The original flamelet calculation. Correlation functions used to estimate the local gas-phase composition are shown for the (b) rich side (measurable fuel Raman signal) and for the (c) lean side (no measured fuel Raman signal).

Fig. 7
Fig. 7

Shot-averaged temperature and fuel mole fraction images. (a) The 100-laser-shot average temperature field is shown in color and is superposed with black contour lines showing the shot-averaged mole fraction field. (b) A temperature field obtained from a single-laser-shot FRS image by use of scattering cross sections derived with the shot-averaged fuel concentration. The single-pulse image was 3 × 3 binned to increase the SNR.

Fig. 8
Fig. 8

Profiles of FRS-measured temperatures, Raman-measured fuel number density, and calculated fuel mole fraction for a N2-diluted CH4 fuel–air flame on a Wolfhard–Parker slot burner. The FRS and Raman data were recorded in Albuquerque, New Mexico, at 0.82 atm. For comparison, temperature profiles obtained by N2 CARS in Livermore, California, at 1.0 atm are also shown. The Raman signal profiles are proportional to the fuel number density, and the mole fraction profiles are quantified on the right-hand axis.

Fig. 9
Fig. 9

FRS-measured temperature field from a vortex-strained two-dimensional laminar diffusion flame.

Tables (2)

Tables Icon

Table 1 Differential Rayleigh Cross Sections (relative to N2) Used for Analysis of FRS Dataa

Tables Icon

Table 2 Results of Temperature Uncertainty Analysis for the Joint FRS–Raman Imaging Data

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S ( T , X ) = C I 0 N k X k ( σ Ω ) k R k ( ω ; T ) τ ( ω ) d ω ,
S S 0 = T 0 T k X k σ k ( T ) 0.21 σ O 2 ( T 0 ) + 0.79 σ N 2 ( T 0 ) = T 0 T σ mix ( T ) σ air ( T 0 ) .
σ k ( T ) = ( σ Ω ) k R k ( ω ;     T ) τ ( ω ) d ω ,
σ mix ( T ) = k X k σ k ( T ) .
B i , j = H i , j - σ He ( 0.79 σ N 2 + 0.21 σ O 2 - σ He ) ( A i , j - A i , j ) ,
F ˜ i , j = 1 c k = - W / 2 W / 2 l = - W / 2 W / 2 F i + k , j + 1 * ; mod ( S i + k , j + 1 * - S i , j * ) Δ S * ,
X f = F ˜ T T ,

Metrics