Abstract

Two methods for measuring the modulation transfer function (MTF) of a charge-coupled device (CCD) that are based on the generation of laser speckle are analyzed and compared. The method based on a single-slit aperture is a quick method, although the measurements are limited to values of less than the Nyquist frequency of the device. The double-slit method permits the measurement of values of as much as some 1.8 times the Nyquist frequency, although it is a slower method because of the necessity to move the CCD. The difference between the MTF values obtained with the two methods is less than 0.1 in magnitude; the root-mean-square error between the two curves is 0.046 (4.6%).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Holst, CCD Arrays, Cameras, and Displays, 2nd ed., Vol. PM142 of SPIE Press Monographs (SPIE Press, Bellingham, Wash., 1996).
  2. J. C. Feltz, M. A. Karim, “Modulation transfer function of charge-coupled devices,” Appl. Opt. 29, 717–722 (1990).
    [CrossRef] [PubMed]
  3. S. K. Park, R. Schowengerdt, M. Kaczynski, “Modulation-transfer-function analysis for sampled image system,” Appl. Opt. 23, 2572–2582 (1984).
    [CrossRef]
  4. D. N. Sitter, J. S. Goddard, R. K. Ferrell, “Method for the measurement of the modulation transfer function of sampled imaging systems from bar-target patterns,” Appl. Opt. 34, 746–751 (1995).
    [CrossRef] [PubMed]
  5. A. Daniels, G. D. Boreman, A. D. Ducharme, E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
    [CrossRef]
  6. N. Guérineau, J. Primot, M. Tauvy, M. Caes, “Modulation transfer function measurement of an infrared focal plane array by use of the self-imaging property of a canted periodic target,” Appl. Opt. 38, 631–637 (1999).
    [CrossRef]
  7. M. Marchywka, D. G. Socker, “Modulation transfer function measurement techniques for small-pixel detectors,” Appl. Opt. 31, 7198–7213 (1992).
    [CrossRef] [PubMed]
  8. J. E. Greivenkamp, A. E. Lowman, “Modulation transfer function measurements of sparse-array sensors using a self-calibrating fringe pattern,” Appl. Opt. 33, 5029–5036 (1994).
    [CrossRef] [PubMed]
  9. G. D. Boreman, Y. Sun, A. B. James, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
    [CrossRef]
  10. M. Sensiper, G. D. Boreman, A. D. Ducharme, D. R. Snyder, “Modulation transfer function testing of detector arrays using narrow-band laser speckle,” Opt. Eng. 32, 395–400 (1993).
    [CrossRef]
  11. G. Boreman, E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25, 148–150 (1986).
    [CrossRef]
  12. J. W. Goodman, “Statical properties of laser speckle and related phenomena,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, Berlin, 1984), pp. 35–40.
  13. L. I. Goldfischer, “Autocorrelation function and power spectral density of laser-produced speckle patterns,” J. Opt. Soc. Am. 55, 247–253 (1965).
    [CrossRef]
  14. G. D. Boreman, “Fourier spectrum techniques for characterization of spatial noise in imaging arrays,” Opt. Eng. 26, 985–991 (1987).
    [CrossRef]

1999 (1)

1995 (2)

D. N. Sitter, J. S. Goddard, R. K. Ferrell, “Method for the measurement of the modulation transfer function of sampled imaging systems from bar-target patterns,” Appl. Opt. 34, 746–751 (1995).
[CrossRef] [PubMed]

A. Daniels, G. D. Boreman, A. D. Ducharme, E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[CrossRef]

1994 (1)

1993 (1)

M. Sensiper, G. D. Boreman, A. D. Ducharme, D. R. Snyder, “Modulation transfer function testing of detector arrays using narrow-band laser speckle,” Opt. Eng. 32, 395–400 (1993).
[CrossRef]

1992 (1)

1990 (2)

G. D. Boreman, Y. Sun, A. B. James, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
[CrossRef]

J. C. Feltz, M. A. Karim, “Modulation transfer function of charge-coupled devices,” Appl. Opt. 29, 717–722 (1990).
[CrossRef] [PubMed]

1987 (1)

G. D. Boreman, “Fourier spectrum techniques for characterization of spatial noise in imaging arrays,” Opt. Eng. 26, 985–991 (1987).
[CrossRef]

1986 (1)

G. Boreman, E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25, 148–150 (1986).
[CrossRef]

1984 (1)

1965 (1)

Boreman, G.

G. Boreman, E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25, 148–150 (1986).
[CrossRef]

Boreman, G. D.

A. Daniels, G. D. Boreman, A. D. Ducharme, E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[CrossRef]

M. Sensiper, G. D. Boreman, A. D. Ducharme, D. R. Snyder, “Modulation transfer function testing of detector arrays using narrow-band laser speckle,” Opt. Eng. 32, 395–400 (1993).
[CrossRef]

G. D. Boreman, Y. Sun, A. B. James, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
[CrossRef]

G. D. Boreman, “Fourier spectrum techniques for characterization of spatial noise in imaging arrays,” Opt. Eng. 26, 985–991 (1987).
[CrossRef]

Caes, M.

Daniels, A.

A. Daniels, G. D. Boreman, A. D. Ducharme, E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[CrossRef]

Dereniak, E. L.

G. Boreman, E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25, 148–150 (1986).
[CrossRef]

Ducharme, A. D.

A. Daniels, G. D. Boreman, A. D. Ducharme, E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[CrossRef]

M. Sensiper, G. D. Boreman, A. D. Ducharme, D. R. Snyder, “Modulation transfer function testing of detector arrays using narrow-band laser speckle,” Opt. Eng. 32, 395–400 (1993).
[CrossRef]

Feltz, J. C.

Ferrell, R. K.

Goddard, J. S.

Goldfischer, L. I.

Goodman, J. W.

J. W. Goodman, “Statical properties of laser speckle and related phenomena,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, Berlin, 1984), pp. 35–40.

Greivenkamp, J. E.

Guérineau, N.

Holst, G. C.

G. C. Holst, CCD Arrays, Cameras, and Displays, 2nd ed., Vol. PM142 of SPIE Press Monographs (SPIE Press, Bellingham, Wash., 1996).

James, A. B.

G. D. Boreman, Y. Sun, A. B. James, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
[CrossRef]

Kaczynski, M.

Karim, M. A.

Lowman, A. E.

Marchywka, M.

Park, S. K.

Primot, J.

Sapir, E.

A. Daniels, G. D. Boreman, A. D. Ducharme, E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[CrossRef]

Schowengerdt, R.

Sensiper, M.

M. Sensiper, G. D. Boreman, A. D. Ducharme, D. R. Snyder, “Modulation transfer function testing of detector arrays using narrow-band laser speckle,” Opt. Eng. 32, 395–400 (1993).
[CrossRef]

Sitter, D. N.

Snyder, D. R.

M. Sensiper, G. D. Boreman, A. D. Ducharme, D. R. Snyder, “Modulation transfer function testing of detector arrays using narrow-band laser speckle,” Opt. Eng. 32, 395–400 (1993).
[CrossRef]

Socker, D. G.

Sun, Y.

G. D. Boreman, Y. Sun, A. B. James, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
[CrossRef]

Tauvy, M.

Appl. Opt. (6)

J. Opt. Soc. Am. (1)

Opt. Eng. (5)

G. D. Boreman, “Fourier spectrum techniques for characterization of spatial noise in imaging arrays,” Opt. Eng. 26, 985–991 (1987).
[CrossRef]

G. D. Boreman, Y. Sun, A. B. James, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
[CrossRef]

M. Sensiper, G. D. Boreman, A. D. Ducharme, D. R. Snyder, “Modulation transfer function testing of detector arrays using narrow-band laser speckle,” Opt. Eng. 32, 395–400 (1993).
[CrossRef]

G. Boreman, E. L. Dereniak, “Method for measuring modulation transfer function of charge-coupled devices using laser speckle,” Opt. Eng. 25, 148–150 (1986).
[CrossRef]

A. Daniels, G. D. Boreman, A. D. Ducharme, E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[CrossRef]

Other (2)

J. W. Goodman, “Statical properties of laser speckle and related phenomena,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, Berlin, 1984), pp. 35–40.

G. C. Holst, CCD Arrays, Cameras, and Displays, 2nd ed., Vol. PM142 of SPIE Press Monographs (SPIE Press, Bellingham, Wash., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for measurement of the MTF of the CCD. The output aperture of the integrating sphere is situated at aperture A (single or double slit) and polarizer P.

Fig. 2
Fig. 2

Single-slit aperture: l1 = 3 mm, l2 = 6 mm.

Fig. 3
Fig. 3

Double-slit aperture: l1 = 0.70 mm, l2 = 10 mm, L = 7.3 mm.

Fig. 4
Fig. 4

(a) Speckle pattern with the single-slit aperture and (b) its corresponding PSDoutput(ξ).

Fig. 5
Fig. 5

(a) Speckle pattern with the double-slit aperture and (b) its corresponding PSDoutput(ξ).

Fig. 6
Fig. 6

MTF(ξ) of the CCD determined with the double-slit aperture. Solid curve, fit to the experimental data.

Fig. 7
Fig. 7

MTF(ξ) of the CCD determined with two different apertures by the speckle method.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

PSD output ( ξ , η ) = [ MTF ( ξ , η ) ] 2 PSD input ( ξ , η ) ,
P ( x , y ) = rect ( x / l 1 ) rect ( y / l 2 ) .
PSD input ( ξ , η ) = I 2 [ δ ( ξ , η ) + ( λ z l 1 ) 2 tri ( λ z l 1 ξ ) tri ( λ z l 1 η ) ] ,
ξ = x / λ z
P ( x , y ) = rect ( x / l 1 ) rect ( y / l 2 ) * [ δ ( x + L / 2 ) + δ ( x - L / 2 ) ] ,
PSD input ( ξ , η ) = I 2 { δ ( ξ , η ) + 1 2 ( λ z ) 2 l 1 l 2 tri ( λ z l 1 ξ ) tri ( λ z l 2 η ) + 1 4 ( λ z ) 2 l 1 l 2 tri [ ξ - L / ( λ z ) l 1 / ( λ z ) ] tri ( λ z l 2 η ) + 1 4 ( λ z ) 2 l 1 l 2 tri [ ξ + L / ( λ z ) l 1 / ( λ z ) ] tri ( λ z l 2 η ) } .

Metrics