Abstract

The design, fabrication, and characterization of a one-dimensional photonic crystal optical filter that has a relatively narrow, flat-topped passband within a wide stop band and small angular sensitivity is presented. The filter is based on a one-dimensional photonic crystal structure that has multiple defects, facilitating simultaneous minimization of the angular sensitivity and optimization of the passband’s characteristics. We use epitaxially grown and selectively oxidized GaAs/AlxOy multilayers to achieve a high-index-contrast material system and incorporate the experimentally determined optical and material properties into the design of the device. A flat-topped bandpass filter with a bandwidth of 65 nm and a wide field of view of 50° is experimentally characterized and compared with the design predictions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), p. 20.
  2. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, Philadelphia, Pa., 2001).
    [CrossRef]
  3. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2455 (2000).
    [CrossRef] [PubMed]
  4. J. R. Barry, Wireless Infrared Communications (Kluwer Academic, Boston, Mass., 1994), pp. 17–35.
  5. Y. Fu, N. K. A. Bryan, “Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections,” Opt. Express10, 540–548 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  6. S. Jivkova, M. Kavehrad, “Holographic optical receiver front end for wireless infrared indoor communications,” Appl. Opt. 40, 2828–35 (2001).
    [CrossRef]
  7. W. Nakagawa, P.-C. Sun, C.-H. Chen, Y. Fainman, “Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities,” Opt. Lett. 27, 191–193 (2002).
    [CrossRef]
  8. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [CrossRef] [PubMed]
  9. Y. Park, Y.-G. Roh, C.-O. Cho, H. Jeona, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
    [CrossRef]
  10. Y. V. Troitski, “Dispersion-free, multiple-beam interferometer,” Appl. Opt. 34, 4717–4722 (1995).
    [CrossRef] [PubMed]
  11. A. V. Tikhonravov, P. W. Baumeister, K. V. Popov, “Phase properties of multilayers,” Appl. Opt. 36, 4382–4392 (1997).
    [CrossRef] [PubMed]
  12. See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
    [CrossRef]
  13. H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
    [CrossRef]
  14. K. J. Knoop, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73, 3512–3514 (1998).
    [CrossRef]
  15. P. Sifkis, P. Paddon, V. Pcradouni, M. Adamcyk, C. Nicoll, A. R. Cowan, T. Tiedje, J. F. Young, “Near-infrared refractive index of thick, laterally oxidized AlGaAs cladding layers,” J. Lightwave Technol. 18, 199–202 (2000).
    [CrossRef]
  16. D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999).
    [CrossRef]
  17. S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
    [CrossRef]
  18. P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997).
    [CrossRef]
  19. E. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  20. D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999).
    [CrossRef]
  21. Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
    [CrossRef]

2003 (1)

Y. Park, Y.-G. Roh, C.-O. Cho, H. Jeona, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

2002 (2)

H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
[CrossRef]

W. Nakagawa, P.-C. Sun, C.-H. Chen, Y. Fainman, “Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities,” Opt. Lett. 27, 191–193 (2002).
[CrossRef]

2001 (3)

S. Jivkova, M. Kavehrad, “Holographic optical receiver front end for wireless infrared indoor communications,” Appl. Opt. 40, 2828–35 (2001).
[CrossRef]

Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
[CrossRef]

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

2000 (2)

1999 (2)

D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999).
[CrossRef]

D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999).
[CrossRef]

1998 (2)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

K. J. Knoop, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73, 3512–3514 (1998).
[CrossRef]

1997 (3)

P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997).
[CrossRef]

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

A. V. Tikhonravov, P. W. Baumeister, K. V. Popov, “Phase properties of multilayers,” Appl. Opt. 36, 4382–4392 (1997).
[CrossRef] [PubMed]

1995 (1)

Adamcyk, M.

Ashby, C. I. H.

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

Barry, J. R.

J. R. Barry, Wireless Infrared Communications (Kluwer Academic, Boston, Mass., 1994), pp. 17–35.

Baumeister, P. W.

Bertness, K. A.

K. J. Knoop, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73, 3512–3514 (1998).
[CrossRef]

Blum, O.

D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999).
[CrossRef]

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

Borghs, G.

P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997).
[CrossRef]

Bunker, B. A.

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

Chang, K. L.

D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999).
[CrossRef]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Chen, C.-H.

Chen, H.

H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
[CrossRef]

Chen, K. Y.

D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999).
[CrossRef]

Cheong, S.-K.

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

Cho, C.-O.

Y. Park, Y.-G. Roh, C.-O. Cho, H. Jeona, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Choquette, K. D.

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

Christensen, D. H.

K. J. Knoop, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73, 3512–3514 (1998).
[CrossRef]

Cowan, A. R.

De Neve, H.

P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997).
[CrossRef]

DeMelo, C. B.

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

El-Zein, N.

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

Epple, J. H.

D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999).
[CrossRef]

Epstein, R. J.

D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999).
[CrossRef]

Fainman, Y.

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Follstaedt, D. M.

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

Geib, K. M.

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

Gilbert, L. R.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2455 (2000).
[CrossRef] [PubMed]

Hall, D. C.

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999).
[CrossRef]

Hammons, B. E.

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

Heremans, P.

P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997).
[CrossRef]

Hou, H.

D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999).
[CrossRef]

Hou, H. Q.

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

Hsieh, K. C.

D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999).
[CrossRef]

Huang, Q.

H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
[CrossRef]

Hull, R.

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

Jeona, H.

Y. Park, Y.-G. Roh, C.-O. Cho, H. Jeona, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Jia, H. Q.

H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
[CrossRef]

Jivkova, S.

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Kavehrad, M.

Knoop, K. J.

K. J. Knoop, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73, 3512–3514 (1998).
[CrossRef]

Kou, L.

D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999).
[CrossRef]

Kramer, G.

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

Kuijk, M.

P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997).
[CrossRef]

Li, L.-H.

Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
[CrossRef]

Li, W.

H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
[CrossRef]

Lin, H. C.

D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999).
[CrossRef]

Lin, Y.-W.

Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
[CrossRef]

Lou, Y.

D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999).
[CrossRef]

Luo, Y.

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, Philadelphia, Pa., 2001).
[CrossRef]

Mathes, D.

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Mirin, R. P.

K. J. Knoop, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73, 3512–3514 (1998).
[CrossRef]

Nakagawa, W.

Nevitt, T. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2455 (2000).
[CrossRef] [PubMed]

Nicoll, C.

Ouderkirk, A. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2455 (2000).
[CrossRef] [PubMed]

Paddon, P.

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Pan, Z.

Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
[CrossRef]

Park, Y.

Y. Park, Y.-G. Roh, C.-O. Cho, H. Jeona, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Pcradouni, V.

Pickrell, G. W.

D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999).
[CrossRef]

Popov, K. V.

Ren, X.-M.

Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
[CrossRef]

Roh, Y.-G.

Y. Park, Y.-G. Roh, C.-O. Cho, H. Jeona, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Roshko, A.

K. J. Knoop, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73, 3512–3514 (1998).
[CrossRef]

Shibata, T.

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

Sifkis, P.

Snider, G. L.

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

Stover, C. A.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2455 (2000).
[CrossRef] [PubMed]

Sun, P.-C.

Synowicki, R. A.

K. J. Knoop, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73, 3512–3514 (1998).
[CrossRef]

Thelen, A.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), p. 20.

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Tiedje, T.

Tikhonravov, A. V.

Troitski, Y. V.

Twesten, R. D.

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

Vanderhaegen, J.

P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997).
[CrossRef]

Vounckx, R.

P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997).
[CrossRef]

Wang, W. C.

H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
[CrossRef]

Wang, W. X.

H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
[CrossRef]

Weber, M. F.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2455 (2000).
[CrossRef] [PubMed]

Windisch, R.

P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997).
[CrossRef]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Wohlert, D. E.

D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999).
[CrossRef]

Wu, H.

D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999).
[CrossRef]

Xu, Y.-Q.

Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
[CrossRef]

Xue, Q. K.

H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
[CrossRef]

Young, J. F.

Zhang, R.-K.

Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
[CrossRef]

Zhang, W.

Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
[CrossRef]

Zhong, Y.

Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
[CrossRef]

Zhou, J.

H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
[CrossRef]

Appl. Opt. (3)

Appl. Phy. Lett. (1)

D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999).
[CrossRef]

Appl. Phys. Lett. (5)

S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001).
[CrossRef]

H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002).
[CrossRef]

K. J. Knoop, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73, 3512–3514 (1998).
[CrossRef]

D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999).
[CrossRef]

Y. Park, Y.-G. Roh, C.-O. Cho, H. Jeona, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Chin. Phys. Lett. (1)

Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein.
[CrossRef]

J. Appl. Phys. (1)

P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (1)

Science (2)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2455 (2000).
[CrossRef] [PubMed]

Other (5)

J. R. Barry, Wireless Infrared Communications (Kluwer Academic, Boston, Mass., 1994), pp. 17–35.

Y. Fu, N. K. A. Bryan, “Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections,” Opt. Express10, 540–548 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), p. 20.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, Philadelphia, Pa., 2001).
[CrossRef]

E. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the structure of a bandpass filter consisting of resonant cavity C formed by a pair of mirrors A and B, each with complex reflection–transmission coefficients. (b) Reflectance phase versus wavelength for an AD mirror obtained by use of a seven-layer stack (H|LHLHLHL|H) with nH = 3.374 and nL = 1.50. The optical thickness of L and H is λ0/4 at λ0 1550 nm, and in a defect is introduced into one layer that has the thickness of a full wave, λ0. Top inset, structure of the seven-layer stack; bottom inset, enlarged curves for the reflectance phases of the AD mirrors with the defect in the fifth or sixth layer. (c) Transmittance of a flat-topped bandpass filter with the structure H|L10HLHLHL2HLHLHL10HL|H.

Fig. 2
Fig. 2

(a) Bandpass filter designs with four optical thickness ratios η analyzed for transmittance with three incidence angles θ. The filter is H|L1H2L1H1L1H1L1H3L1H1L1H1L1H2L1|H with optical thickness ratio η = H1/L1. For η = 0.67, b = 9.84, and c = 1.87. For η = 1, H2 = 10H and H3 = 2H. For η = 2.33, H2 = 6.29H and H3 = 2.26H. For η = 4, H2 = 6.46H and H3 = 2.42H. The results were calculated for TE polarization. (b) Reflectance phases of the AD mirror with η = 2.33 and six incidence angles θ. (c) Shift of the center wavelength of filter Δλ50 and filter bandwidth ΔB of a 15-layer flat-topped bandpass filter versus η. We found spectrum shift Δλ50 by changing the incidence angle from 0 to 50°, and bandwidth ΔB is the range where the transmittance is larger than 0.9 at normal incidence. (d) Transmittance of the designed filter at three incidence angles θ.

Fig. 3
Fig. 3

(a) Scanning-electron microscope image of the fabricated mesa structure and subsequent delamination. (b) Mesa structure intact after in situ annealing as described in the text. Scale for bars in both images, 10 μm.

Fig. 4
Fig. 4

Apparatus for optical characterization. The broadband incident beam is collimated and polarized. The sample is then 4f imaged via a lens onto a pinhole for alignment and control of the measurement area and 4f imaged again onto an InGaAs CCD and spectrum analysis setup.

Fig. 5
Fig. 5

(a) Measured transmittance data utilized to determine the index of refraction and amount of layer shrinkage of the oxide. Solid (dashed) curves, to TE (TM) polarization. Inset, normal-incidence transmittance (reflectance) data illustrated by solid darker (lighter) curves. We fitted the predicted values (dashed curves) to determine the thickness of the initial epitaxial layer. (b) Simultaneous fitting of the index of refraction and shrinkage of the oxide layers. The resonance of the Fabry–Perot structure is then fitted at various angles of incidence for both TE and TM polarization (solid curves) to yield the two quantities of interest. For comparison, a similar fit is shown with an oxide index value of 1.55 (dashed curves); the resonance values did not fit at higher incidence angles.

Fig. 6
Fig. 6

(a) Normal-incidence transmittance of the filter, showing the stop band and the narrow transmission band. Measured data are shown by the solid curve; the calculated values, with an oxide index of 1.50, are shown dashed. Dispersion in the GaAs is accounted for to accurately fit the data in the lower wavelength regime. (b) Transmittance for various angles of incidence. The solid and dashed curves correspond to the measured data and to the data calculated by transfer matrix methods, respectively.

Tables (1)

Tables Icon

Table 1 Designed Thicknesses of the 15-Layer Filter

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = T A T B 1 + R A R B + 2 R A R B cos Φ ,
Φ ( ω , θ ) = 2 ( ω / c ) n d cos θ - ϕ A ( ω , θ ) - ϕ B ( ω , θ ) ,

Metrics