Abstract

A diode-laser-based sensor has been developed for ultraviolet absorption measurements of the nitric oxide (NO) molecule. The sensor is based on the sum-frequency mixing (SFM) of the output of a tunable, 395-nm external-cavity diode laser and a 532-nm diode-pumped, frequency-doubled Nd:YAG laser in a β-barium borate crystal. The SFM process generates 325 ± 75 nW of ultraviolet radiation at 226.8 nm, corresponding to the (v′ = 0, v″ = 0) band of the A2+X2Π electronic transition of NO. Results from initial laboratory experiments in a gas cell are briefly discussed, followed by results from field demonstrations of the sensor for measurements in the exhaust streams of a gas turbine engine and a well-stirred reactor. It is demonstrated that the sensor is capable of fully resolving the absorption spectrum and accurately measuring the NO concentration in actual combustion environments. Absorption is clearly visible in the gas turbine exhaust even for the lowest concentrations of 9 parts per million (ppm) for idle conditions and for a path length of 0.51 m. The sensitivity of the current system is estimated at 0.23%, which corresponds to a detection limit of 0.8 ppm in 1 m for 1000 K gas. The estimated uncertainty in the absolute concentrations that we obtained using the sensor is 10%.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  2. E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
    [CrossRef]
  3. N. Docquier, S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107–150 (2002).
    [CrossRef]
  4. S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
    [CrossRef]
  5. U.S. Environmental Protection Agency, “National air quality and emission trends report, 1998,” (U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, N.C., 2001).
  6. W. J. Kessler, D. M. Sonnenfroh, B. L. Upschulte, M. G. Allen, “Near-IR diode lasers for in-situ measurements of combustor and aeroengine emissions,” paper AIAA-97-2706, presented at the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, Wash., 6–9 July 1997 (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).
  7. D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
    [CrossRef]
  8. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]
  9. M. Snels, C. Corsi, F. D’Amato, M. De Rosa, G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB laser,” Opt. Commun. 159, 80–83 (1999).
    [CrossRef]
  10. D. B. Oh, A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36, 3294–3297 (1997).
    [CrossRef] [PubMed]
  11. P. K. Falcone, R. K. Hanson, C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35, 81–99 (1983).
    [CrossRef]
  12. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
    [CrossRef]
  13. C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, J. Grego, “Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation,” Appl. Opt. 41, 6018–6029 (2002).
    [CrossRef] [PubMed]
  14. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40, 812–820 (2001).
    [CrossRef]
  15. D. D. Nelson, J. H. Shorter, J. B. McManus, M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
    [CrossRef]
  16. S. Wehe, M. Allen, L. Xiang, J. Jeffries, R. Hanson, “NO and CO absorption measurements with a mid-IR quantum cascade laser for engine exhaust applications,” paper AIAA-03-0588, presented at the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev., 6–9 January 2003 (American Institute of Aeronautics and Astronautics, Reston, Va., 2003).
  17. G. Hancock, V. L. Kasyutich, G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74, 569–575 (2002).
    [CrossRef]
  18. K. A. Peterson, D. B. Oh, “High-sensitivity detection of CH radicals in flames by use of a diode-laser-based near-ultraviolet light source,” Opt. Lett. 24, 667–669 (1999).
    [CrossRef]
  19. H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
    [CrossRef]
  20. G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, T. Walther, “OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser,” Opt. Lett. 26, 1870–1872 (2001).
    [CrossRef]
  21. L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002).
    [CrossRef]
  22. D. B. Oh, “Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection,” Opt. Lett. 20, 100–102 (1995).
    [CrossRef] [PubMed]
  23. J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
    [CrossRef]
  24. J. P. Koplow, D. A. V. Kliner, L. Goldberg, “Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy,” Appl. Opt. 37, 3954–3960 (1998).
    [CrossRef]
  25. J. W. Blust, D. R. Ballal, G. J. Sturgess, “Fuel effects on lean blowout and emissions from a well-stirred reactor,” J. Propul. Power 15, 216–223 (1999).
    [CrossRef]
  26. R. P. Lucht, S. Roy, T. A. Reichardt, “Calculation of radiative transition rates for polarized laser radiation,” Prog. Energy Combust. Sci. 29, 115–137 (2003).
    [CrossRef]
  27. J. Luque, D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program (Version 1.5),” (SRI International, Menlo Park, Calif., 1999), www.sri.com/psd/lifbase .
  28. J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2∑+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
    [CrossRef]
  29. J. Humlíček, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
    [CrossRef]
  30. A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A←X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
    [CrossRef]
  31. P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
    [CrossRef]
  32. M. F. Zabielski, L. G. Dodge, M. B. Colket, D. J. Seery, “The optical and probe measurement of NO: a comparative study,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981) pp. 1591–1598.
    [CrossRef]
  33. M. D. Di Rosa, R. K. Hanson, “Collision broadening and shift of NO γ(0, 0) absorption lines by O2and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
    [CrossRef]
  34. M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
    [CrossRef]
  35. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, The Netherlands, 1996).
  36. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]

2003 (1)

R. P. Lucht, S. Roy, T. A. Reichardt, “Calculation of radiative transition rates for polarized laser radiation,” Prog. Energy Combust. Sci. 29, 115–137 (2003).
[CrossRef]

2002 (6)

N. Docquier, S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107–150 (2002).
[CrossRef]

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, J. Grego, “Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation,” Appl. Opt. 41, 6018–6029 (2002).
[CrossRef] [PubMed]

D. D. Nelson, J. H. Shorter, J. B. McManus, M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

G. Hancock, V. L. Kasyutich, G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74, 569–575 (2002).
[CrossRef]

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002).
[CrossRef]

2001 (2)

2000 (2)

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

1999 (4)

J. W. Blust, D. R. Ballal, G. J. Sturgess, “Fuel effects on lean blowout and emissions from a well-stirred reactor,” J. Propul. Power 15, 216–223 (1999).
[CrossRef]

K. A. Peterson, D. B. Oh, “High-sensitivity detection of CH radicals in flames by use of a diode-laser-based near-ultraviolet light source,” Opt. Lett. 24, 667–669 (1999).
[CrossRef]

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

1998 (4)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

J. P. Koplow, D. A. V. Kliner, L. Goldberg, “Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy,” Appl. Opt. 37, 3954–3960 (1998).
[CrossRef]

1997 (2)

1995 (1)

1994 (2)

M. D. Di Rosa, R. K. Hanson, “Collision broadening and shift of NO γ(0, 0) absorption lines by O2and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

1993 (1)

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

1992 (3)

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A←X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2∑+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

1983 (1)

P. K. Falcone, R. K. Hanson, C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35, 81–99 (1983).
[CrossRef]

1979 (1)

J. Humlíček, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

Allen, M.

S. Wehe, M. Allen, L. Xiang, J. Jeffries, R. Hanson, “NO and CO absorption measurements with a mid-IR quantum cascade laser for engine exhaust applications,” paper AIAA-03-0588, presented at the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev., 6–9 January 2003 (American Institute of Aeronautics and Astronautics, Reston, Va., 2003).

Allen, M. G.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40, 812–820 (2001).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
[CrossRef]

W. J. Kessler, D. M. Sonnenfroh, B. L. Upschulte, M. G. Allen, “Near-IR diode lasers for in-situ measurements of combustor and aeroengine emissions,” paper AIAA-97-2706, presented at the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, Wash., 6–9 July 1997 (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).

Alnis, J.

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Anderson, T. N.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, T. Walther, “OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser,” Opt. Lett. 26, 1870–1872 (2001).
[CrossRef]

Baer, D. S.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Baillargeon, J. N.

Bakowski, B.

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

Ballal, D. R.

J. W. Blust, D. R. Ballal, G. J. Sturgess, “Fuel effects on lean blowout and emissions from a well-stirred reactor,” J. Propul. Power 15, 216–223 (1999).
[CrossRef]

Barron-Jimenez, R.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

Barry, H. R.

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

Blust, J. W.

J. W. Blust, D. R. Ballal, G. J. Sturgess, “Fuel effects on lean blowout and emissions from a well-stirred reactor,” J. Propul. Power 15, 216–223 (1999).
[CrossRef]

Camp, M.

Candel, S.

N. Docquier, S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107–150 (2002).
[CrossRef]

Capasso, F.

Carter, C. D.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2∑+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Caton, J. A.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, T. Walther, “OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser,” Opt. Lett. 26, 1870–1872 (2001).
[CrossRef]

Chang, A. Y.

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A←X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Cho, A. Y.

Colket, M. B.

M. F. Zabielski, L. G. Dodge, M. B. Colket, D. J. Seery, “The optical and probe measurement of NO: a comparative study,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981) pp. 1591–1598.
[CrossRef]

Corner, L.

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002).
[CrossRef]

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

Corsi, C.

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Crosley, D. R.

J. Luque, D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program (Version 1.5),” (SRI International, Menlo Park, Calif., 1999), www.sri.com/psd/lifbase .

D’Amato, F.

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Danehy, P. M.

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

De Rosa, M.

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Di Rosa, M. D.

M. D. Di Rosa, R. K. Hanson, “Collision broadening and shift of NO γ(0, 0) absorption lines by O2and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

DiRosa, M. D.

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A←X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Docquier, N.

N. Docquier, S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107–150 (2002).
[CrossRef]

Dodge, L. G.

M. F. Zabielski, L. G. Dodge, M. B. Colket, D. J. Seery, “The optical and probe measurement of NO: a comparative study,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981) pp. 1591–1598.
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, The Netherlands, 1996).

Falcone, P. K.

P. K. Falcone, R. K. Hanson, C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35, 81–99 (1983).
[CrossRef]

Farrow, R. L.

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

Freegarde, T.

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

Friedman-Hill, E. J.

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

Furlong, E. R.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

Gibb, J. S.

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002).
[CrossRef]

Gmachl, C.

Goldberg, L.

Grego, J.

Gustafsson, U.

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Hancock, G.

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002).
[CrossRef]

G. Hancock, V. L. Kasyutich, G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74, 569–575 (2002).
[CrossRef]

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

Hanna, S. F.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

Hanson, R.

S. Wehe, M. Allen, L. Xiang, J. Jeffries, R. Hanson, “NO and CO absorption measurements with a mid-IR quantum cascade laser for engine exhaust applications,” paper AIAA-03-0588, presented at the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev., 6–9 January 2003 (American Institute of Aeronautics and Astronautics, Reston, Va., 2003).

Hanson, R. K.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collision broadening and shift of NO γ(0, 0) absorption lines by O2and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A←X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

P. K. Falcone, R. K. Hanson, C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35, 81–99 (1983).
[CrossRef]

Hawkins, O. T. W.

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

Humlícek, J.

J. Humlíček, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

Hutchinson, A.

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002).
[CrossRef]

Hutchinson, A. L.

Jacobs, R. M. J.

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

Jeffers, J. D.

Jeffries, J.

S. Wehe, M. Allen, L. Xiang, J. Jeffries, R. Hanson, “NO and CO absorption measurements with a mid-IR quantum cascade laser for engine exhaust applications,” paper AIAA-03-0588, presented at the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev., 6–9 January 2003 (American Institute of Aeronautics and Astronautics, Reston, Va., 2003).

Jimenez, J. L.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Kasyutich, V. L.

G. Hancock, V. L. Kasyutich, G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74, 569–575 (2002).
[CrossRef]

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002).
[CrossRef]

Kessler, W. J.

W. J. Kessler, D. M. Sonnenfroh, B. L. Upschulte, M. G. Allen, “Near-IR diode lasers for in-situ measurements of combustor and aeroengine emissions,” paper AIAA-97-2706, presented at the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, Wash., 6–9 July 1997 (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).

Kliner, D. A. V.

Kolb, C. E.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Koplow, J. P.

Kruger, C. H.

P. K. Falcone, R. K. Hanson, C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35, 81–99 (1983).
[CrossRef]

Laurendeau, N. M.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2∑+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Lucht, R. P.

R. P. Lucht, S. Roy, T. A. Reichardt, “Calculation of radiative transition rates for polarized laser radiation,” Prog. Energy Combust. Sci. 29, 115–137 (2003).
[CrossRef]

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, T. Walther, “OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser,” Opt. Lett. 26, 1870–1872 (2001).
[CrossRef]

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

Luque, J.

J. Luque, D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program (Version 1.5),” (SRI International, Menlo Park, Calif., 1999), www.sri.com/psd/lifbase .

McCann, P. J.

McManus, J. B.

D. D. Nelson, J. H. Shorter, J. B. McManus, M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Mihalcea, R. M.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Mock, A.

Modugno, G.

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Namjou, K.

Nelson, D. D.

D. D. Nelson, J. H. Shorter, J. B. McManus, M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

Oh, D. B.

Peterson, K. A.

Peverall, R.

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002).
[CrossRef]

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

Rawlins, W. T.

Ray, G. J.

Reichardt, T. A.

R. P. Lucht, S. Roy, T. A. Reichardt, “Calculation of radiative transition rates for polarized laser radiation,” Prog. Energy Combust. Sci. 29, 115–137 (2003).
[CrossRef]

Reisel, J. R.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2∑+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Ritchie, G. A. D.

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002).
[CrossRef]

G. Hancock, V. L. Kasyutich, G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74, 569–575 (2002).
[CrossRef]

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

Roller, C.

Roy, S.

R. P. Lucht, S. Roy, T. A. Reichardt, “Calculation of radiative transition rates for polarized laser radiation,” Prog. Energy Combust. Sci. 29, 115–137 (2003).
[CrossRef]

Seery, D. J.

M. F. Zabielski, L. G. Dodge, M. B. Colket, D. J. Seery, “The optical and probe measurement of NO: a comparative study,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981) pp. 1591–1598.
[CrossRef]

Shorter, J. H.

D. D. Nelson, J. H. Shorter, J. B. McManus, M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

Silver, J. A.

Sivco, D. L.

Snels, M.

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Somesfalean, G.

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Sonnenfroh, D. M.

D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40, 812–820 (2001).
[CrossRef]

D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
[CrossRef]

W. J. Kessler, D. M. Sonnenfroh, B. L. Upschulte, M. G. Allen, “Near-IR diode lasers for in-situ measurements of combustor and aeroengine emissions,” paper AIAA-97-2706, presented at the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, Wash., 6–9 July 1997 (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).

Stanton, A. C.

Sturgess, G. J.

J. W. Blust, D. R. Ballal, G. J. Sturgess, “Fuel effects on lean blowout and emissions from a well-stirred reactor,” J. Propul. Power 15, 216–223 (1999).
[CrossRef]

Svanberg, S.

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Upschulte, B. L.

W. J. Kessler, D. M. Sonnenfroh, B. L. Upschulte, M. G. Allen, “Near-IR diode lasers for in-situ measurements of combustor and aeroengine emissions,” paper AIAA-97-2706, presented at the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, Wash., 6–9 July 1997 (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).

Walther, T.

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, T. Walther, “OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser,” Opt. Lett. 26, 1870–1872 (2001).
[CrossRef]

Webber, M. E.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

Wehe, S.

S. Wehe, M. Allen, L. Xiang, J. Jeffries, R. Hanson, “NO and CO absorption measurements with a mid-IR quantum cascade laser for engine exhaust applications,” paper AIAA-03-0588, presented at the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev., 6–9 January 2003 (American Institute of Aeronautics and Astronautics, Reston, Va., 2003).

Xiang, L.

S. Wehe, M. Allen, L. Xiang, J. Jeffries, R. Hanson, “NO and CO absorption measurements with a mid-IR quantum cascade laser for engine exhaust applications,” paper AIAA-03-0588, presented at the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev., 6–9 January 2003 (American Institute of Aeronautics and Astronautics, Reston, Va., 2003).

Zabielski, M. F.

M. F. Zabielski, L. G. Dodge, M. B. Colket, D. J. Seery, “The optical and probe measurement of NO: a comparative study,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981) pp. 1591–1598.
[CrossRef]

Zahniser, M. S.

D. D. Nelson, J. H. Shorter, J. B. McManus, M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

AIAA J. (1)

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (6)

L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002).
[CrossRef]

P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998).
[CrossRef]

G. Hancock, V. L. Kasyutich, G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74, 569–575 (2002).
[CrossRef]

S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000).
[CrossRef]

Chem. Phys. Lett. (1)

H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000).
[CrossRef]

Combust. Sci. Technol. (1)

P. K. Falcone, R. K. Hanson, C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35, 81–99 (1983).
[CrossRef]

J. Mol. Spectrosc. (1)

M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

J. Propul. Power (1)

J. W. Blust, D. R. Ballal, G. J. Sturgess, “Fuel effects on lean blowout and emissions from a well-stirred reactor,” J. Propul. Power 15, 216–223 (1999).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (4)

M. D. Di Rosa, R. K. Hanson, “Collision broadening and shift of NO γ(0, 0) absorption lines by O2and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2∑+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

J. Humlíček, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A←X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Meas. Sci. Technol. (2)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Opt. Commun. (1)

M. Snels, C. Corsi, F. D’Amato, M. De Rosa, G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB laser,” Opt. Commun. 159, 80–83 (1999).
[CrossRef]

Opt. Lett. (3)

Prog. Energy Combust. Sci. (2)

R. P. Lucht, S. Roy, T. A. Reichardt, “Calculation of radiative transition rates for polarized laser radiation,” Prog. Energy Combust. Sci. 29, 115–137 (2003).
[CrossRef]

N. Docquier, S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107–150 (2002).
[CrossRef]

Other (6)

U.S. Environmental Protection Agency, “National air quality and emission trends report, 1998,” (U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, N.C., 2001).

W. J. Kessler, D. M. Sonnenfroh, B. L. Upschulte, M. G. Allen, “Near-IR diode lasers for in-situ measurements of combustor and aeroengine emissions,” paper AIAA-97-2706, presented at the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, Wash., 6–9 July 1997 (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).

S. Wehe, M. Allen, L. Xiang, J. Jeffries, R. Hanson, “NO and CO absorption measurements with a mid-IR quantum cascade laser for engine exhaust applications,” paper AIAA-03-0588, presented at the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev., 6–9 January 2003 (American Institute of Aeronautics and Astronautics, Reston, Va., 2003).

J. Luque, D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program (Version 1.5),” (SRI International, Menlo Park, Calif., 1999), www.sri.com/psd/lifbase .

M. F. Zabielski, L. G. Dodge, M. B. Colket, D. J. Seery, “The optical and probe measurement of NO: a comparative study,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981) pp. 1591–1598.
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, The Netherlands, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the diode-laser-based NO sensor system for combustion exhaust measurements. SFG, sum-frequency generation; ICFD, intracavity frequency doubled.

Fig. 2
Fig. 2

Experimental layout for remote operation of the NO sensor for measurements in the exhaust of the Honeywell gas turbine APU.

Fig. 3
Fig. 3

Photograph of the NO sensor in the Honeywell gas turbine APU test cell. 4 ft (1.2192 m), 2 ft (0.6096 m).

Fig. 4
Fig. 4

Comparison of measured and calculated NO absorption line shapes for room-temperature gas cell measurement of 100 pm NO (nominal) at 20 Torr. The Doppler width is ΔνD = 0.099 cm−1, and the collision-broadening coefficient is 2γ = 0.585 cm−1/atm. The transitions shown are three sets of overlapped transitions (from left to right): P2(4) and PQ12(4) at 44077.30 and 44077.30 cm−1, P2(3) and PQ12(3) at 44077.42 and 44077.42 cm−1, and P2(5) and PQ12(5) at 44077.71 and 44077.70 cm−1.

Fig. 5
Fig. 5

Comparison of measured and calculated NO absorption line shapes for the gas turbine APU running at full load. The calculated Doppler width is ΔνD = 0.158 cm−1 and the collision width is Δνc = 0.297 cm−1. All measurements in the APU probed the P2(10) and PQ12(10) overlapped transitions at 44087.79 and 44087.77 cm−1, respectively.

Fig. 6
Fig. 6

Comparison of measured and calculated NO absorption line shapes for the gas turbine APU running at half of a full load. The calculated Doppler width is ΔνD = 0.150 cm−1 and the collision width is Δνc = 0.344 cm−1.

Fig. 7
Fig. 7

Comparison of measured and calculated NO absorption line shapes for the gas turbine APU running at one third of a full load. The calculated Doppler width is ΔνD = 0.147 cm−1 and the collision width is Δνc = 0.344 cm−1.

Fig. 8
Fig. 8

Comparison of measured and calculated NO absorption line shapes for the gas turbine APU running at a low load condition. The calculated Doppler width is ΔνD = 0.140 cm−1 and the collision width is Δνc = 0.339 cm−1.

Fig. 9
Fig. 9

Comparison of measured and calculated NO absorption line shapes for the gas turbine APU running at idle. The calculated Doppler width is ΔνD = 0.139 cm−1 and the collision width is Δνc = 0.331 cm−1.

Fig. 10
Fig. 10

Comparison of measured and calculated NO absorption line shapes for the WSR at Φ = 0.4 with 3000 ppm of NO in N2 seeded into the reactor. The calculated Doppler width is ΔνD = 0.168 cm−1 and the collision width is Δνc = 0.282 cm−1. All measurements in the WSR probed the P2(10) and PQ12(10) overlapped transitions at 44087.79 and 44087.77 cm−1, respectively.

Fig. 11
Fig. 11

Comparison of measured and calculated NO absorption line shapes for the WSR at Φ = 0.75. The calculated Doppler width is ΔνD = 0.222 cm−1 and the collision width is Δνc = 0.191 cm−1.

Fig. 12
Fig. 12

Measured and calculated NO absorption spectra from Fig. 11 with the first half of the scan only. The reduction of noise without absorption 2 demonstrates the poor operation of the ECDL during the second half of the scan.

Tables (2)

Tables Icon

Table 1 Summary of Probe and Absorption Measurements of NO Concentration and Temperature for the Field Demonstrationsa

Tables Icon

Table 2 Comparison of Measured Collision Widths to Predictions from Eqs. (12)(15) for the Field Demonstrations

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T ν = I I 0 = exp ( - k ν L ) ,
A ν = 1 - T ν = 1 - exp ( - k ν L ) .
k ν = K j i G ( ν ) .
K j i = λ j i 2 A j i 8 π c ( g j g i n i - n j ) ,
n i N = g i exp ( - E i / k B T ) Z ,
G ( ν ) = 2 ln 2 π V ( x , a ) Δ ν D ,
V ( x , a ) = a π - exp ( - y 2 ) a 2 + ( x - y ) 2 d y .
x = 2 ln 2 ( ν - ν j i ) / Δ ν D
a = ln 2 Δ ν c / Δ ν D ,
Δ ν D = 7.1623 × 10 - 7 T M NO ν j i .
T ν = ( S / R ) with NO ( S / R ) without NO ,
Δ ν c = Σ i 2 γ i P i ,
2 γ N 2 = 0.583 ( 295 K / T ) 0.75 ,
2 γ H 2 O = 0.79 ( 295 K / T ) 0.79 ,
2 γ O 2 = 0.53 ( 295 K / T ) 0.66 ,

Metrics