Abstract

Ultrafast asynchronous all-optical signal processing is experimentally demonstrated. It is based on the intensity-dependent, self-frequency shift of a gigahertz Raman soliton. We demonstrate error-free, asynchronous, all-optical, bit-by-bit, self-signal recognition and demultiplexing from contended optical packets without use of an optical buffer, control pulse, or bit-phase synchronization. Fourfold, contended, 9.95-Gbit/s optical packets are transmitted through a conventional repeater span of 80 km and simultaneously demultiplexed to multiwavelength 9.95-Gbit/s optical packets with 0.5-dB processing sensitivity. Furthermore, we successfully accomplish demultiplexing from overlapping signals in contended optical packets with better than 3-dB recognition sensitivity. We confirm the capability of realizing a 3× cascade operation from bit-error-rate measurements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” Photon. Technol. Lett. 6, 457–460 (1994).
    [CrossRef]
  2. S. Wabnitz, C. Angelis, “Raman-assisted femtosecond soliton switching and wavelength demultiplexing with optical fiber rocking filters,” Photon. Technol. Lett. 8, 635–637 (1996).
    [CrossRef]
  3. M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High-bit-rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
    [CrossRef]
  4. H. Hatami-Hanza, J. Hong, A. Atieh, P. Myslinski, J. Chrostowski, “Demonstration of all-optical demultiplexing of a multilevel soliton signal employing soliton decomposition and self-frequency shift,” Photon. Technol. Lett. 9, 833–835 (1997).
    [CrossRef]
  5. M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800-Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Laser and Electro-Optics, Vol. 2 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper CPDB4.
  6. M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication, Vol. 2 of 2003 Technical Digest Series (Optical Society of America, Washington, D.C., 2003), paper FD4.
  7. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  8. F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  9. M. N. Islam, G. Sucha, I. B. Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B. 6, 1149–1158 (1989).
    [CrossRef]
  10. M. Nakazawa, K. Kurokawa, “Femtosecond soliton transmission in 18-km-long, dispersion-shifted, distributed erbium-doped fiber amplifier,” Electron. Lett. 27, 1369–1371 (1991).
    [CrossRef]
  11. M. Kato, K. Fujiura, T. Kurihara, “Generation of superstable 40-GHz pulse trains without supermode competition from a Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
    [CrossRef]
  12. S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the Laser and Electro-Optics Society (LEOS), Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.

2004 (1)

M. Kato, K. Fujiura, T. Kurihara, “Generation of superstable 40-GHz pulse trains without supermode competition from a Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
[CrossRef]

2002 (1)

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High-bit-rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

1997 (1)

H. Hatami-Hanza, J. Hong, A. Atieh, P. Myslinski, J. Chrostowski, “Demonstration of all-optical demultiplexing of a multilevel soliton signal employing soliton decomposition and self-frequency shift,” Photon. Technol. Lett. 9, 833–835 (1997).
[CrossRef]

1996 (1)

S. Wabnitz, C. Angelis, “Raman-assisted femtosecond soliton switching and wavelength demultiplexing with optical fiber rocking filters,” Photon. Technol. Lett. 8, 635–637 (1996).
[CrossRef]

1994 (1)

D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” Photon. Technol. Lett. 6, 457–460 (1994).
[CrossRef]

1991 (1)

M. Nakazawa, K. Kurokawa, “Femtosecond soliton transmission in 18-km-long, dispersion-shifted, distributed erbium-doped fiber amplifier,” Electron. Lett. 27, 1369–1371 (1991).
[CrossRef]

1989 (1)

M. N. Islam, G. Sucha, I. B. Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B. 6, 1149–1158 (1989).
[CrossRef]

1986 (2)

Angelis, C.

S. Wabnitz, C. Angelis, “Raman-assisted femtosecond soliton switching and wavelength demultiplexing with optical fiber rocking filters,” Photon. Technol. Lett. 8, 635–637 (1996).
[CrossRef]

Atieh, A.

H. Hatami-Hanza, J. Hong, A. Atieh, P. Myslinski, J. Chrostowski, “Demonstration of all-optical demultiplexing of a multilevel soliton signal employing soliton decomposition and self-frequency shift,” Photon. Technol. Lett. 9, 833–835 (1997).
[CrossRef]

Blumenthal, D. J.

D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” Photon. Technol. Lett. 6, 457–460 (1994).
[CrossRef]

Chemla, D. S.

M. N. Islam, G. Sucha, I. B. Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B. 6, 1149–1158 (1989).
[CrossRef]

Chrostowski, J.

H. Hatami-Hanza, J. Hong, A. Atieh, P. Myslinski, J. Chrostowski, “Demonstration of all-optical demultiplexing of a multilevel soliton signal employing soliton decomposition and self-frequency shift,” Photon. Technol. Lett. 9, 833–835 (1997).
[CrossRef]

Feuerstein, R. J.

D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” Photon. Technol. Lett. 6, 457–460 (1994).
[CrossRef]

Fujiura, K.

M. Kato, K. Fujiura, T. Kurihara, “Generation of superstable 40-GHz pulse trains without supermode competition from a Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
[CrossRef]

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High-bit-rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800-Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Laser and Electro-Optics, Vol. 2 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper CPDB4.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication, Vol. 2 of 2003 Technical Digest Series (Optical Society of America, Washington, D.C., 2003), paper FD4.

Gordon, J. P.

M. N. Islam, G. Sucha, I. B. Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B. 6, 1149–1158 (1989).
[CrossRef]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[CrossRef] [PubMed]

Hatami-Hanza, H.

H. Hatami-Hanza, J. Hong, A. Atieh, P. Myslinski, J. Chrostowski, “Demonstration of all-optical demultiplexing of a multilevel soliton signal employing soliton decomposition and self-frequency shift,” Photon. Technol. Lett. 9, 833–835 (1997).
[CrossRef]

Hong, J.

H. Hatami-Hanza, J. Hong, A. Atieh, P. Myslinski, J. Chrostowski, “Demonstration of all-optical demultiplexing of a multilevel soliton signal employing soliton decomposition and self-frequency shift,” Photon. Technol. Lett. 9, 833–835 (1997).
[CrossRef]

Islam, M. N.

M. N. Islam, G. Sucha, I. B. Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B. 6, 1149–1158 (1989).
[CrossRef]

Itoh, M.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the Laser and Electro-Optics Society (LEOS), Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.

Joseph, I. B.

M. N. Islam, G. Sucha, I. B. Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B. 6, 1149–1158 (1989).
[CrossRef]

Kato, M.

M. Kato, K. Fujiura, T. Kurihara, “Generation of superstable 40-GHz pulse trains without supermode competition from a Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
[CrossRef]

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High-bit-rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800-Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Laser and Electro-Optics, Vol. 2 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper CPDB4.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication, Vol. 2 of 2003 Technical Digest Series (Optical Society of America, Washington, D.C., 2003), paper FD4.

Kurihara, T.

M. Kato, K. Fujiura, T. Kurihara, “Generation of superstable 40-GHz pulse trains without supermode competition from a Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
[CrossRef]

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High-bit-rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800-Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Laser and Electro-Optics, Vol. 2 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper CPDB4.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication, Vol. 2 of 2003 Technical Digest Series (Optical Society of America, Washington, D.C., 2003), paper FD4.

Kurokawa, K.

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High-bit-rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Nakazawa, K. Kurokawa, “Femtosecond soliton transmission in 18-km-long, dispersion-shifted, distributed erbium-doped fiber amplifier,” Electron. Lett. 27, 1369–1371 (1991).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Myslinski, P.

H. Hatami-Hanza, J. Hong, A. Atieh, P. Myslinski, J. Chrostowski, “Demonstration of all-optical demultiplexing of a multilevel soliton signal employing soliton decomposition and self-frequency shift,” Photon. Technol. Lett. 9, 833–835 (1997).
[CrossRef]

Nakazawa, M.

M. Nakazawa, K. Kurokawa, “Femtosecond soliton transmission in 18-km-long, dispersion-shifted, distributed erbium-doped fiber amplifier,” Electron. Lett. 27, 1369–1371 (1991).
[CrossRef]

Okamoto, K.

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High-bit-rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

Okuno, M.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the Laser and Electro-Optics Society (LEOS), Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.

Sauer, J. R.

D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” Photon. Technol. Lett. 6, 457–460 (1994).
[CrossRef]

Shibata, T.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the Laser and Electro-Optics Society (LEOS), Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.

Sohma, S.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the Laser and Electro-Optics Society (LEOS), Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.

Sucha, G.

M. N. Islam, G. Sucha, I. B. Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B. 6, 1149–1158 (1989).
[CrossRef]

Takahashi, H.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the Laser and Electro-Optics Society (LEOS), Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.

Wabnitz, S.

S. Wabnitz, C. Angelis, “Raman-assisted femtosecond soliton switching and wavelength demultiplexing with optical fiber rocking filters,” Photon. Technol. Lett. 8, 635–637 (1996).
[CrossRef]

Wegener, M.

M. N. Islam, G. Sucha, I. B. Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B. 6, 1149–1158 (1989).
[CrossRef]

Electron. Lett. (3)

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High-bit-rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Nakazawa, K. Kurokawa, “Femtosecond soliton transmission in 18-km-long, dispersion-shifted, distributed erbium-doped fiber amplifier,” Electron. Lett. 27, 1369–1371 (1991).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Generation of superstable 40-GHz pulse trains without supermode competition from a Fabry–Perot resonator integrated with an electro-optic phase modulator,” Electron. Lett. 40, 299–301 (2004).
[CrossRef]

J. Opt. Soc. Am. B. (1)

M. N. Islam, G. Sucha, I. B. Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B. 6, 1149–1158 (1989).
[CrossRef]

Opt. Lett. (2)

Photon. Technol. Lett. (3)

D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” Photon. Technol. Lett. 6, 457–460 (1994).
[CrossRef]

S. Wabnitz, C. Angelis, “Raman-assisted femtosecond soliton switching and wavelength demultiplexing with optical fiber rocking filters,” Photon. Technol. Lett. 8, 635–637 (1996).
[CrossRef]

H. Hatami-Hanza, J. Hong, A. Atieh, P. Myslinski, J. Chrostowski, “Demonstration of all-optical demultiplexing of a multilevel soliton signal employing soliton decomposition and self-frequency shift,” Photon. Technol. Lett. 9, 833–835 (1997).
[CrossRef]

Other (3)

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800-Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Laser and Electro-Optics, Vol. 2 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper CPDB4.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication, Vol. 2 of 2003 Technical Digest Series (Optical Society of America, Washington, D.C., 2003), paper FD4.

S. Sohma, H. Takahashi, M. Itoh, T. Shibata, M. Okuno, “Compact and low driving power silica-based 1 × N planar lightwave circuit switches with super high delta waveguides and heat insulating grooves,” in Proceedings of the Laser and Electro-Optics Society (LEOS), Glasgow, Scotland (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), paper ThM2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic image of bit-by-bit self-signal recognition and simultaneous demultiplexing.

Fig. 2
Fig. 2

Experimental setup for signal processing from contended optical packets: PPG, pulse pattern generator; PLC, PLC multiplexer; BER, bit-error-rate test set; RS fiber, highly nonlinear fiber for Raman soliton generation.

Fig. 3
Fig. 3

Configuration of a PLC multiplexer for fourfold contended optical packets.

Fig. 4
Fig. 4

Experimental setup for processing overlapping signals in contended optical packets and examination of cascade operation: OPG, optical pulse generator; BPF, bandpass filter; AWG, arrayed waveguide grating.

Fig. 5
Fig. 5

Configuration of a PLC multiplexer for overlapping signals in contended optical packets.

Fig. 6
Fig. 6

Optical sampling oscilloscope trace of contended fourfold optical packets.

Fig. 7
Fig. 7

Demultiplexed spectra of all contended packets.

Fig. 8
Fig. 8

Autocorrelation trace of a demultiplexed signal after it passes through a 0.5-nm optical bandpass filter.

Fig. 9
Fig. 9

Bit-error-rate performance of transmitted fourfold contended optical packets.

Fig. 10
Fig. 10

Overlapping signals with a relative intensity difference of 3 dB in contended optical packets: (a) autocorrelation trace measured after a PLC multiplexer with a relative delay time of 1.5 ps; (b) spectrum of overlapping signals.

Fig. 11
Fig. 11

Eye diagrams of demultiplexed signals measured after the first processor: (a) channel 1, 1561 nm; (b) channel 2, 1563 nm.

Fig. 12
Fig. 12

Bit-error-rate performance measured after the first, second, and third signal processors.

Fig. 13
Fig. 13

Spectra of demultiplexed signals measured after second and third signal processors.

Fig. 14
Fig. 14

Eye diagrams measured after the third processor: (a) channel 1, 1581 nm; (b) channel 2, 1584 nm.

Metrics