Abstract

A novel diffused photon-pair density wave (DPPDW) composed of correlated polarized photon pairs at different temporal frequencies and orthogonal linearly polarized states is proposed. A theory of DPPDWs is developed. A DPPDW selected by coherence gating and polarization gating that satisfies the diffusion equation has been verified experimentally. The sensitivity of amplitude and phase detection of the heterodyne signal has been improved by the properties of synchronized detection and common-path propagation of polarized pair photons in a multiple-scattering medium. Both reduced scattering coefficient μ2s′ and absorption coefficient μ2a of the scattering medium in terms of the measured phase and amplitude of the heterodyne signal have been obtained. The detection sensitivity of μ2s′ and μ2a and the properties of a DPPDW in a multiple-scattering medium are discussed and analyzed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription