Abstract

An imaging ellipsometer technique on internal reflection geometry that can measure the thickness distribution of a thin film possessing an assumed refractive index is described. Because a prism is used for the internal reflection geometry, it was theoretically predicted that angular derivation from the normal incidence on the prism surface affects only the Ψ value by a factor of 0.97 at maximum. Measurements were carried out for an optical system of silica substrate–TiO2 layer–silica layer–protein film–air, with a thin-film array of dried protein as the sample film. Thickness of the protein films was two-dimensionally estimated only from the measured map of the Δ value by use of the simulated relationship between the thickness and the Δ value. The thickness map obtained was coincident on the whole with the results according to a mechanical scanning. The detection limit was approximately ±0.2 nm. These findings validate the optical effect of a high-index additional layer to improve the sensitivity and precision of thickness measurements of the sample film on transparent substrates.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).
  2. H. Hsiung, Th. Rasing, Y. R. Shen, “Wall-induced orientational order of a liquid crystal in the isotropic phase—an evanescent-wave-ellipsometry study,” Phys. Rev. Lett. 57, 3065–3068 (1986).
    [CrossRef]
  3. S. Okutani, M. Kimura, T. Akahane, H. Toriumi, T. Tadokoro, K. Akao, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Mol. Cryst. Liq. Cryst. 367, 691–700 (2001).
    [CrossRef]
  4. S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, T. Akahane, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Jpn. J. Appl. Phys. Part 1 40, 244–249 (2001).
    [CrossRef]
  5. S. Ikeda, T. Ogasawara, M. Nakata, Y. Takanishi, K. Ishikawa, H. Takazoe, “Molecular orientation near the surface of a smectic liquid crystal cell showing V-shaped switching by means of attenuated total internal reflection ellipsometry,” Phys. Rev. E 63, 061703 (2001).
    [CrossRef]
  6. M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Polymer concentration profile near a liquid–solid interface: evanescent wave ellipsometry study,” Macromolecules 22, 2682–2685 (1989).
    [CrossRef]
  7. M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Adsorption phenomenon of lightly sulfonated polymers on a solid substrate surface,” Macromolecules 24, 319–321 (1991).
    [CrossRef]
  8. M. W. Kim, D. G. Peiffer, W. Chen, Y. R. Shen, “End-functionalized polymer adsorption study by evanescent ellipsometry,” Macromolecules 24, 4216–4217 (1991).
    [CrossRef]
  9. A. Röseler, E. H. Korte, “Ellipsometric ATR spectroscopy for measuring the infrared refractive index,” J. Mol. Struct. 349, 321–324 (1995).
    [CrossRef]
  10. J. H. W. G. den Boer, G. M. W. Kroesen, F. J. de Hoog, “Measurement of the complex refractive index of liquids in the infrared using spectroscopic attenuated total reflection ellipsometry: correction for depolarization by scattering,” Appl. Opt. 34, 5708–5714 (1995).
    [CrossRef] [PubMed]
  11. M.-H. Chiu, J.-Y. Lee, D.-C. Su, “Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry,” Appl. Opt. 36, 2936–2939 (1997).
    [CrossRef] [PubMed]
  12. T. E. Tiwald, D. W. Thompson, J. A. Woollam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
    [CrossRef]
  13. Though a measurement method proposed earlier was conducted between ϕB and ϕC,this was not for thickness of the film but for small absorption of the medium; R. M. A. Azzam, “Differential reflection phase shift under conditions of attenuated internal reflection,” J. Opt. Soc. Am. A 16, 1700–1702 (1999).
    [CrossRef]
  14. P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
    [CrossRef]
  15. P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B 84, 278–282 (2002).
    [CrossRef]
  16. M. Poksinski, H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–712 (2004).
    [CrossRef]
  17. R. M. A. Azzam, M. Elshazly-Zaghloul, N. M. Bashara, “Combined reflection and transmission thin-film ellipsometry: a unified linear analysis,” Appl. Opt. 14, 1652–1663 (1975).
    [CrossRef] [PubMed]
  18. S. Otsuki, K. Ohta, K. Tamada, S. Wakida, “Sensitivity and precision in ellipsometric thickness measurements on transparent substrates and their improvement using high-refractive-index additional layers,” submitted to Appl. Opt.
  19. A.-H. Liu, P. C. Wayner, J. L. Plawsky, “Image scanning ellipsometry for measuring nonuniform film thickness profiles,” Appl. Opt. 33, 1223–1229 (1994).
    [CrossRef] [PubMed]
  20. H. K. Pak, B. M. Law, “2D imaging ellipsometric microscope,” Rev. Sci. Instrum. 66, 4972–4976 (1995).
    [CrossRef]
  21. G. Jin, R. Jansson, H. Arwin, “Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
    [CrossRef]
  22. M. Harke, R. Teppner, O. Shhulz, H. R. Motschmann, H. Orendi, “Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging techniques including Brewster angle microscopy,” Rev. Sci. Instrum. 68, 3130–3134 (1997).
    [CrossRef]
  23. A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, “High resolution imaging microellipsometry of soft surfaces at 3 μm lateral and 5 Å normal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
    [CrossRef]
  24. D. Tanooka, E. Adachi, K. Nagayama, “Color-imaging ellipsometer: high-speed characterization of in-plane distribution of film thickness at nano-scale,” Jpn. J. Appl. Phys. 40, 877–880 (2001).
    [CrossRef]
  25. Q. Zhan, J. R. Leger, “High-resolution imaging ellipsometer,” Appl. Opt. 41, 4443–4450 (2002).
    [CrossRef] [PubMed]
  26. R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).
    [CrossRef]
  27. H. Arwin, “Is ellipsometry suitable for sensor applications?” Sens. Actuators A 92, 43–51 (2001).
    [CrossRef]
  28. S. Nomura, K. Kinoshita, “A note on the theories underlying the polarimetric study of very thin dielectric surface layers,” J. Phys. Soc. Jpn. 14, 297–303 (1959).
    [CrossRef]
  29. D. Den Engelsen, “Ellipsometry of anisotropic films,” J. Opt. Soc. Am. 61, 1460–1466 (1971).
    [CrossRef]
  30. D. Ducharme, J.-J. Max, C. Salesse, R. M. Leblanc, “Ellipsometric study of the physical states of phosphatidylcho-lines at the air–water interface,” J. Phys. Chem. 94, 1925–1932 (1990).
    [CrossRef]
  31. B. Trotter, G. Moddel, R. Ostroff, G. R. Bogart, “Fixed-polarizer ellipsometry: a simple technique to measure the thickness of very thin films,” Opt. Eng. 38, 902–907 (1999).
    [CrossRef]

2004 (1)

M. Poksinski, H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–712 (2004).
[CrossRef]

2002 (2)

P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B 84, 278–282 (2002).
[CrossRef]

Q. Zhan, J. R. Leger, “High-resolution imaging ellipsometer,” Appl. Opt. 41, 4443–4450 (2002).
[CrossRef] [PubMed]

2001 (5)

H. Arwin, “Is ellipsometry suitable for sensor applications?” Sens. Actuators A 92, 43–51 (2001).
[CrossRef]

D. Tanooka, E. Adachi, K. Nagayama, “Color-imaging ellipsometer: high-speed characterization of in-plane distribution of film thickness at nano-scale,” Jpn. J. Appl. Phys. 40, 877–880 (2001).
[CrossRef]

S. Okutani, M. Kimura, T. Akahane, H. Toriumi, T. Tadokoro, K. Akao, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Mol. Cryst. Liq. Cryst. 367, 691–700 (2001).
[CrossRef]

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, T. Akahane, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Jpn. J. Appl. Phys. Part 1 40, 244–249 (2001).
[CrossRef]

S. Ikeda, T. Ogasawara, M. Nakata, Y. Takanishi, K. Ishikawa, H. Takazoe, “Molecular orientation near the surface of a smectic liquid crystal cell showing V-shaped switching by means of attenuated total internal reflection ellipsometry,” Phys. Rev. E 63, 061703 (2001).
[CrossRef]

1999 (3)

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[CrossRef]

B. Trotter, G. Moddel, R. Ostroff, G. R. Bogart, “Fixed-polarizer ellipsometry: a simple technique to measure the thickness of very thin films,” Opt. Eng. 38, 902–907 (1999).
[CrossRef]

Though a measurement method proposed earlier was conducted between ϕB and ϕC,this was not for thickness of the film but for small absorption of the medium; R. M. A. Azzam, “Differential reflection phase shift under conditions of attenuated internal reflection,” J. Opt. Soc. Am. A 16, 1700–1702 (1999).
[CrossRef]

1998 (2)

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, “High resolution imaging microellipsometry of soft surfaces at 3 μm lateral and 5 Å normal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[CrossRef]

T. E. Tiwald, D. W. Thompson, J. A. Woollam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

1997 (2)

M.-H. Chiu, J.-Y. Lee, D.-C. Su, “Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry,” Appl. Opt. 36, 2936–2939 (1997).
[CrossRef] [PubMed]

M. Harke, R. Teppner, O. Shhulz, H. R. Motschmann, H. Orendi, “Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging techniques including Brewster angle microscopy,” Rev. Sci. Instrum. 68, 3130–3134 (1997).
[CrossRef]

1996 (1)

G. Jin, R. Jansson, H. Arwin, “Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
[CrossRef]

1995 (3)

H. K. Pak, B. M. Law, “2D imaging ellipsometric microscope,” Rev. Sci. Instrum. 66, 4972–4976 (1995).
[CrossRef]

A. Röseler, E. H. Korte, “Ellipsometric ATR spectroscopy for measuring the infrared refractive index,” J. Mol. Struct. 349, 321–324 (1995).
[CrossRef]

J. H. W. G. den Boer, G. M. W. Kroesen, F. J. de Hoog, “Measurement of the complex refractive index of liquids in the infrared using spectroscopic attenuated total reflection ellipsometry: correction for depolarization by scattering,” Appl. Opt. 34, 5708–5714 (1995).
[CrossRef] [PubMed]

1994 (1)

1991 (2)

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Adsorption phenomenon of lightly sulfonated polymers on a solid substrate surface,” Macromolecules 24, 319–321 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, Y. R. Shen, “End-functionalized polymer adsorption study by evanescent ellipsometry,” Macromolecules 24, 4216–4217 (1991).
[CrossRef]

1990 (2)

R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).
[CrossRef]

D. Ducharme, J.-J. Max, C. Salesse, R. M. Leblanc, “Ellipsometric study of the physical states of phosphatidylcho-lines at the air–water interface,” J. Phys. Chem. 94, 1925–1932 (1990).
[CrossRef]

1989 (1)

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Polymer concentration profile near a liquid–solid interface: evanescent wave ellipsometry study,” Macromolecules 22, 2682–2685 (1989).
[CrossRef]

1986 (1)

H. Hsiung, Th. Rasing, Y. R. Shen, “Wall-induced orientational order of a liquid crystal in the isotropic phase—an evanescent-wave-ellipsometry study,” Phys. Rev. Lett. 57, 3065–3068 (1986).
[CrossRef]

1975 (1)

1971 (1)

1959 (1)

S. Nomura, K. Kinoshita, “A note on the theories underlying the polarimetric study of very thin dielectric surface layers,” J. Phys. Soc. Jpn. 14, 297–303 (1959).
[CrossRef]

Adachi, E.

D. Tanooka, E. Adachi, K. Nagayama, “Color-imaging ellipsometer: high-speed characterization of in-plane distribution of film thickness at nano-scale,” Jpn. J. Appl. Phys. 40, 877–880 (2001).
[CrossRef]

Akahane, T.

S. Okutani, M. Kimura, T. Akahane, H. Toriumi, T. Tadokoro, K. Akao, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Mol. Cryst. Liq. Cryst. 367, 691–700 (2001).
[CrossRef]

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, T. Akahane, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Jpn. J. Appl. Phys. Part 1 40, 244–249 (2001).
[CrossRef]

Akao, K.

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, T. Akahane, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Jpn. J. Appl. Phys. Part 1 40, 244–249 (2001).
[CrossRef]

S. Okutani, M. Kimura, T. Akahane, H. Toriumi, T. Tadokoro, K. Akao, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Mol. Cryst. Liq. Cryst. 367, 691–700 (2001).
[CrossRef]

Albersdörfer, A.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, “High resolution imaging microellipsometry of soft surfaces at 3 μm lateral and 5 Å normal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[CrossRef]

Arwin, H.

M. Poksinski, H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–712 (2004).
[CrossRef]

H. Arwin, “Is ellipsometry suitable for sensor applications?” Sens. Actuators A 92, 43–51 (2001).
[CrossRef]

G. Jin, R. Jansson, H. Arwin, “Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
[CrossRef]

Azzam, R. M. A.

Bashara, N. M.

Beloglazov, A. A.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[CrossRef]

Bogart, G. R.

B. Trotter, G. Moddel, R. Ostroff, G. R. Bogart, “Fixed-polarizer ellipsometry: a simple technique to measure the thickness of very thin films,” Opt. Eng. 38, 902–907 (1999).
[CrossRef]

Bornmann, A.

P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B 84, 278–282 (2002).
[CrossRef]

Chen, W.

M. W. Kim, D. G. Peiffer, W. Chen, Y. R. Shen, “End-functionalized polymer adsorption study by evanescent ellipsometry,” Macromolecules 24, 4216–4217 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Adsorption phenomenon of lightly sulfonated polymers on a solid substrate surface,” Macromolecules 24, 319–321 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Polymer concentration profile near a liquid–solid interface: evanescent wave ellipsometry study,” Macromolecules 22, 2682–2685 (1989).
[CrossRef]

Chiu, M.-H.

Collins, R. W.

R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).
[CrossRef]

de Hoog, F. J.

den Boer, J. H. W. G.

Den Engelsen, D.

Ducharme, D.

D. Ducharme, J.-J. Max, C. Salesse, R. M. Leblanc, “Ellipsometric study of the physical states of phosphatidylcho-lines at the air–water interface,” J. Phys. Chem. 94, 1925–1932 (1990).
[CrossRef]

Elender, G.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, “High resolution imaging microellipsometry of soft surfaces at 3 μm lateral and 5 Å normal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[CrossRef]

Elshazly-Zaghloul, M.

Harke, M.

M. Harke, R. Teppner, O. Shhulz, H. R. Motschmann, H. Orendi, “Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging techniques including Brewster angle microscopy,” Rev. Sci. Instrum. 68, 3130–3134 (1997).
[CrossRef]

Hsiung, H.

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Adsorption phenomenon of lightly sulfonated polymers on a solid substrate surface,” Macromolecules 24, 319–321 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Polymer concentration profile near a liquid–solid interface: evanescent wave ellipsometry study,” Macromolecules 22, 2682–2685 (1989).
[CrossRef]

H. Hsiung, Th. Rasing, Y. R. Shen, “Wall-induced orientational order of a liquid crystal in the isotropic phase—an evanescent-wave-ellipsometry study,” Phys. Rev. Lett. 57, 3065–3068 (1986).
[CrossRef]

Ikeda, S.

S. Ikeda, T. Ogasawara, M. Nakata, Y. Takanishi, K. Ishikawa, H. Takazoe, “Molecular orientation near the surface of a smectic liquid crystal cell showing V-shaped switching by means of attenuated total internal reflection ellipsometry,” Phys. Rev. E 63, 061703 (2001).
[CrossRef]

Ishikawa, K.

S. Ikeda, T. Ogasawara, M. Nakata, Y. Takanishi, K. Ishikawa, H. Takazoe, “Molecular orientation near the surface of a smectic liquid crystal cell showing V-shaped switching by means of attenuated total internal reflection ellipsometry,” Phys. Rev. E 63, 061703 (2001).
[CrossRef]

Jansson, R.

G. Jin, R. Jansson, H. Arwin, “Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
[CrossRef]

Jin, G.

G. Jin, R. Jansson, H. Arwin, “Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
[CrossRef]

Kim, M. W.

M. W. Kim, D. G. Peiffer, W. Chen, Y. R. Shen, “End-functionalized polymer adsorption study by evanescent ellipsometry,” Macromolecules 24, 4216–4217 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Adsorption phenomenon of lightly sulfonated polymers on a solid substrate surface,” Macromolecules 24, 319–321 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Polymer concentration profile near a liquid–solid interface: evanescent wave ellipsometry study,” Macromolecules 22, 2682–2685 (1989).
[CrossRef]

Kimura, M.

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, T. Akahane, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Jpn. J. Appl. Phys. Part 1 40, 244–249 (2001).
[CrossRef]

S. Okutani, M. Kimura, T. Akahane, H. Toriumi, T. Tadokoro, K. Akao, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Mol. Cryst. Liq. Cryst. 367, 691–700 (2001).
[CrossRef]

Kinoshita, K.

S. Nomura, K. Kinoshita, “A note on the theories underlying the polarimetric study of very thin dielectric surface layers,” J. Phys. Soc. Jpn. 14, 297–303 (1959).
[CrossRef]

Kochergin, V. E.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[CrossRef]

Korte, E. H.

A. Röseler, E. H. Korte, “Ellipsometric ATR spectroscopy for measuring the infrared refractive index,” J. Mol. Struct. 349, 321–324 (1995).
[CrossRef]

Kroesen, G. M. W.

Ksenevich, T. I.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[CrossRef]

Law, B. M.

H. K. Pak, B. M. Law, “2D imaging ellipsometric microscope,” Rev. Sci. Instrum. 66, 4972–4976 (1995).
[CrossRef]

Leblanc, R. M.

D. Ducharme, J.-J. Max, C. Salesse, R. M. Leblanc, “Ellipsometric study of the physical states of phosphatidylcho-lines at the air–water interface,” J. Phys. Chem. 94, 1925–1932 (1990).
[CrossRef]

Lee, J.-Y.

Leger, J. R.

Liu, A.-H.

Mathe, G.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, “High resolution imaging microellipsometry of soft surfaces at 3 μm lateral and 5 Å normal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[CrossRef]

Max, J.-J.

D. Ducharme, J.-J. Max, C. Salesse, R. M. Leblanc, “Ellipsometric study of the physical states of phosphatidylcho-lines at the air–water interface,” J. Phys. Chem. 94, 1925–1932 (1990).
[CrossRef]

Moddel, G.

B. Trotter, G. Moddel, R. Ostroff, G. R. Bogart, “Fixed-polarizer ellipsometry: a simple technique to measure the thickness of very thin films,” Opt. Eng. 38, 902–907 (1999).
[CrossRef]

Motschmann, H. R.

M. Harke, R. Teppner, O. Shhulz, H. R. Motschmann, H. Orendi, “Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging techniques including Brewster angle microscopy,” Rev. Sci. Instrum. 68, 3130–3134 (1997).
[CrossRef]

Nagayama, K.

D. Tanooka, E. Adachi, K. Nagayama, “Color-imaging ellipsometer: high-speed characterization of in-plane distribution of film thickness at nano-scale,” Jpn. J. Appl. Phys. 40, 877–880 (2001).
[CrossRef]

Nakata, M.

S. Ikeda, T. Ogasawara, M. Nakata, Y. Takanishi, K. Ishikawa, H. Takazoe, “Molecular orientation near the surface of a smectic liquid crystal cell showing V-shaped switching by means of attenuated total internal reflection ellipsometry,” Phys. Rev. E 63, 061703 (2001).
[CrossRef]

Neumaier, K. R.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, “High resolution imaging microellipsometry of soft surfaces at 3 μm lateral and 5 Å normal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[CrossRef]

Nikitin, P. I.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[CrossRef]

Nomura, S.

S. Nomura, K. Kinoshita, “A note on the theories underlying the polarimetric study of very thin dielectric surface layers,” J. Phys. Soc. Jpn. 14, 297–303 (1959).
[CrossRef]

Ogasawara, T.

S. Ikeda, T. Ogasawara, M. Nakata, Y. Takanishi, K. Ishikawa, H. Takazoe, “Molecular orientation near the surface of a smectic liquid crystal cell showing V-shaped switching by means of attenuated total internal reflection ellipsometry,” Phys. Rev. E 63, 061703 (2001).
[CrossRef]

Ohta, K.

S. Otsuki, K. Ohta, K. Tamada, S. Wakida, “Sensitivity and precision in ellipsometric thickness measurements on transparent substrates and their improvement using high-refractive-index additional layers,” submitted to Appl. Opt.

Okutani, S.

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, T. Akahane, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Jpn. J. Appl. Phys. Part 1 40, 244–249 (2001).
[CrossRef]

S. Okutani, M. Kimura, T. Akahane, H. Toriumi, T. Tadokoro, K. Akao, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Mol. Cryst. Liq. Cryst. 367, 691–700 (2001).
[CrossRef]

Orendi, H.

M. Harke, R. Teppner, O. Shhulz, H. R. Motschmann, H. Orendi, “Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging techniques including Brewster angle microscopy,” Rev. Sci. Instrum. 68, 3130–3134 (1997).
[CrossRef]

Ostroff, R.

B. Trotter, G. Moddel, R. Ostroff, G. R. Bogart, “Fixed-polarizer ellipsometry: a simple technique to measure the thickness of very thin films,” Opt. Eng. 38, 902–907 (1999).
[CrossRef]

Otsuki, S.

S. Otsuki, K. Ohta, K. Tamada, S. Wakida, “Sensitivity and precision in ellipsometric thickness measurements on transparent substrates and their improvement using high-refractive-index additional layers,” submitted to Appl. Opt.

Paduschek, P.

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, “High resolution imaging microellipsometry of soft surfaces at 3 μm lateral and 5 Å normal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[CrossRef]

Pak, H. K.

H. K. Pak, B. M. Law, “2D imaging ellipsometric microscope,” Rev. Sci. Instrum. 66, 4972–4976 (1995).
[CrossRef]

Peiffer, D. G.

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Adsorption phenomenon of lightly sulfonated polymers on a solid substrate surface,” Macromolecules 24, 319–321 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, Y. R. Shen, “End-functionalized polymer adsorption study by evanescent ellipsometry,” Macromolecules 24, 4216–4217 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Polymer concentration profile near a liquid–solid interface: evanescent wave ellipsometry study,” Macromolecules 22, 2682–2685 (1989).
[CrossRef]

Pepper, S. V.

T. E. Tiwald, D. W. Thompson, J. A. Woollam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

Plawsky, J. L.

Poksinski, M.

M. Poksinski, H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–712 (2004).
[CrossRef]

Rasing, Th.

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Adsorption phenomenon of lightly sulfonated polymers on a solid substrate surface,” Macromolecules 24, 319–321 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Polymer concentration profile near a liquid–solid interface: evanescent wave ellipsometry study,” Macromolecules 22, 2682–2685 (1989).
[CrossRef]

H. Hsiung, Th. Rasing, Y. R. Shen, “Wall-induced orientational order of a liquid crystal in the isotropic phase—an evanescent-wave-ellipsometry study,” Phys. Rev. Lett. 57, 3065–3068 (1986).
[CrossRef]

Röseler, A.

A. Röseler, E. H. Korte, “Ellipsometric ATR spectroscopy for measuring the infrared refractive index,” J. Mol. Struct. 349, 321–324 (1995).
[CrossRef]

Salesse, C.

D. Ducharme, J.-J. Max, C. Salesse, R. M. Leblanc, “Ellipsometric study of the physical states of phosphatidylcho-lines at the air–water interface,” J. Phys. Chem. 94, 1925–1932 (1990).
[CrossRef]

Shen, Y. R.

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Adsorption phenomenon of lightly sulfonated polymers on a solid substrate surface,” Macromolecules 24, 319–321 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, Y. R. Shen, “End-functionalized polymer adsorption study by evanescent ellipsometry,” Macromolecules 24, 4216–4217 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Polymer concentration profile near a liquid–solid interface: evanescent wave ellipsometry study,” Macromolecules 22, 2682–2685 (1989).
[CrossRef]

H. Hsiung, Th. Rasing, Y. R. Shen, “Wall-induced orientational order of a liquid crystal in the isotropic phase—an evanescent-wave-ellipsometry study,” Phys. Rev. Lett. 57, 3065–3068 (1986).
[CrossRef]

Shhulz, O.

M. Harke, R. Teppner, O. Shhulz, H. R. Motschmann, H. Orendi, “Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging techniques including Brewster angle microscopy,” Rev. Sci. Instrum. 68, 3130–3134 (1997).
[CrossRef]

Su, D.-C.

Tadokoro, T.

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, T. Akahane, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Jpn. J. Appl. Phys. Part 1 40, 244–249 (2001).
[CrossRef]

S. Okutani, M. Kimura, T. Akahane, H. Toriumi, T. Tadokoro, K. Akao, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Mol. Cryst. Liq. Cryst. 367, 691–700 (2001).
[CrossRef]

Takanishi, Y.

S. Ikeda, T. Ogasawara, M. Nakata, Y. Takanishi, K. Ishikawa, H. Takazoe, “Molecular orientation near the surface of a smectic liquid crystal cell showing V-shaped switching by means of attenuated total internal reflection ellipsometry,” Phys. Rev. E 63, 061703 (2001).
[CrossRef]

Takazoe, H.

S. Ikeda, T. Ogasawara, M. Nakata, Y. Takanishi, K. Ishikawa, H. Takazoe, “Molecular orientation near the surface of a smectic liquid crystal cell showing V-shaped switching by means of attenuated total internal reflection ellipsometry,” Phys. Rev. E 63, 061703 (2001).
[CrossRef]

Tamada, K.

S. Otsuki, K. Ohta, K. Tamada, S. Wakida, “Sensitivity and precision in ellipsometric thickness measurements on transparent substrates and their improvement using high-refractive-index additional layers,” submitted to Appl. Opt.

Tanooka, D.

D. Tanooka, E. Adachi, K. Nagayama, “Color-imaging ellipsometer: high-speed characterization of in-plane distribution of film thickness at nano-scale,” Jpn. J. Appl. Phys. 40, 877–880 (2001).
[CrossRef]

Teppner, R.

M. Harke, R. Teppner, O. Shhulz, H. R. Motschmann, H. Orendi, “Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging techniques including Brewster angle microscopy,” Rev. Sci. Instrum. 68, 3130–3134 (1997).
[CrossRef]

Thompson, D. W.

T. E. Tiwald, D. W. Thompson, J. A. Woollam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

Tiwald, T. E.

T. E. Tiwald, D. W. Thompson, J. A. Woollam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

Toriumi, H.

S. Okutani, M. Kimura, T. Akahane, H. Toriumi, T. Tadokoro, K. Akao, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Mol. Cryst. Liq. Cryst. 367, 691–700 (2001).
[CrossRef]

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, T. Akahane, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Jpn. J. Appl. Phys. Part 1 40, 244–249 (2001).
[CrossRef]

Trotter, B.

B. Trotter, G. Moddel, R. Ostroff, G. R. Bogart, “Fixed-polarizer ellipsometry: a simple technique to measure the thickness of very thin films,” Opt. Eng. 38, 902–907 (1999).
[CrossRef]

Valeiko, M. V.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[CrossRef]

Wakida, S.

S. Otsuki, K. Ohta, K. Tamada, S. Wakida, “Sensitivity and precision in ellipsometric thickness measurements on transparent substrates and their improvement using high-refractive-index additional layers,” submitted to Appl. Opt.

Wayner, P. C.

Westphal, P.

P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B 84, 278–282 (2002).
[CrossRef]

Woollam, J. A.

T. E. Tiwald, D. W. Thompson, J. A. Woollam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

Zhan, Q.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

A. Albersdörfer, G. Elender, G. Mathe, K. R. Neumaier, P. Paduschek, “High resolution imaging microellipsometry of soft surfaces at 3 μm lateral and 5 Å normal resolution,” Appl. Phys. Lett. 72, 2930–2932 (1998).
[CrossRef]

J. Mol. Struct. (1)

A. Röseler, E. H. Korte, “Ellipsometric ATR spectroscopy for measuring the infrared refractive index,” J. Mol. Struct. 349, 321–324 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

D. Ducharme, J.-J. Max, C. Salesse, R. M. Leblanc, “Ellipsometric study of the physical states of phosphatidylcho-lines at the air–water interface,” J. Phys. Chem. 94, 1925–1932 (1990).
[CrossRef]

J. Phys. Soc. Jpn. (1)

S. Nomura, K. Kinoshita, “A note on the theories underlying the polarimetric study of very thin dielectric surface layers,” J. Phys. Soc. Jpn. 14, 297–303 (1959).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D. Tanooka, E. Adachi, K. Nagayama, “Color-imaging ellipsometer: high-speed characterization of in-plane distribution of film thickness at nano-scale,” Jpn. J. Appl. Phys. 40, 877–880 (2001).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

S. Okutani, M. Kimura, H. Toriumi, K. Akao, T. Tadokoro, T. Akahane, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Jpn. J. Appl. Phys. Part 1 40, 244–249 (2001).
[CrossRef]

Macromolecules (3)

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Polymer concentration profile near a liquid–solid interface: evanescent wave ellipsometry study,” Macromolecules 22, 2682–2685 (1989).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, H. Hsiung, Th. Rasing, Y. R. Shen, “Adsorption phenomenon of lightly sulfonated polymers on a solid substrate surface,” Macromolecules 24, 319–321 (1991).
[CrossRef]

M. W. Kim, D. G. Peiffer, W. Chen, Y. R. Shen, “End-functionalized polymer adsorption study by evanescent ellipsometry,” Macromolecules 24, 4216–4217 (1991).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

S. Okutani, M. Kimura, T. Akahane, H. Toriumi, T. Tadokoro, K. Akao, “Analysis of electrical response of nematic liquid crystal by ellipsometry,” Mol. Cryst. Liq. Cryst. 367, 691–700 (2001).
[CrossRef]

Opt. Eng. (1)

B. Trotter, G. Moddel, R. Ostroff, G. R. Bogart, “Fixed-polarizer ellipsometry: a simple technique to measure the thickness of very thin films,” Opt. Eng. 38, 902–907 (1999).
[CrossRef]

Phys. Rev. E (1)

S. Ikeda, T. Ogasawara, M. Nakata, Y. Takanishi, K. Ishikawa, H. Takazoe, “Molecular orientation near the surface of a smectic liquid crystal cell showing V-shaped switching by means of attenuated total internal reflection ellipsometry,” Phys. Rev. E 63, 061703 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

H. Hsiung, Th. Rasing, Y. R. Shen, “Wall-induced orientational order of a liquid crystal in the isotropic phase—an evanescent-wave-ellipsometry study,” Phys. Rev. Lett. 57, 3065–3068 (1986).
[CrossRef]

Rev. Sci. Instrum. (4)

H. K. Pak, B. M. Law, “2D imaging ellipsometric microscope,” Rev. Sci. Instrum. 66, 4972–4976 (1995).
[CrossRef]

G. Jin, R. Jansson, H. Arwin, “Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
[CrossRef]

M. Harke, R. Teppner, O. Shhulz, H. R. Motschmann, H. Orendi, “Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging techniques including Brewster angle microscopy,” Rev. Sci. Instrum. 68, 3130–3134 (1997).
[CrossRef]

R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).
[CrossRef]

Sens. Actuators A (1)

H. Arwin, “Is ellipsometry suitable for sensor applications?” Sens. Actuators A 92, 43–51 (2001).
[CrossRef]

Sens. Actuators B (2)

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[CrossRef]

P. Westphal, A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B 84, 278–282 (2002).
[CrossRef]

Thin Solid Films (2)

M. Poksinski, H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–712 (2004).
[CrossRef]

T. E. Tiwald, D. W. Thompson, J. A. Woollam, S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films 313–314, 718–721 (1998).
[CrossRef]

Other (2)

S. Otsuki, K. Ohta, K. Tamada, S. Wakida, “Sensitivity and precision in ellipsometric thickness measurements on transparent substrates and their improvement using high-refractive-index additional layers,” submitted to Appl. Opt.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure of the substrate.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Relationships of the simulated ellipsometric values and the incident angle at varying sample thicknesses.

Fig. 4
Fig. 4

Simulated relationship of the sample thickness and simulated Δ value at the incident angle of 41.2°.

Fig. 5
Fig. 5

(a) Thickness distribution of an array composed of dried thin films of proteins: lactoglobulin, albumin, ovalbumin, and papain, from top to bottom. (b) Line profiles along the cross sections indicated in (a).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E = [ E x E y ] ,
E x = E ˜ x exp ( j δ x ) ,             E y = E ˜ y exp ( j δ y )
χ = E ˜ y E ˜ x exp [ j ( δ y - δ x ) ] .
T D = [ t x 0 0 t y ] p 1 / 2 ,
t x = 2 sin θ t cos θ i sin ( θ i + θ t ) cos ( θ i - θ t ) ,
t y = 2 sin θ t cos θ i sin ( θ i + θ t ) ,
p = n 2 cos θ t n 1 cos θ i .
E AI x y = T D 2 x y T S x y T D 1 x y E CO x y ,
E AI x y = T D 2 x y T D 1 x y T S x y E CO x y = T S x y E CO x y
T S x y = T D 2 x y T D 1 x y T S x y .
T D 2 x y T D 1 x y = [ t x 2 t x 1 0 0 t y 2 t y 1 ] .
χ AI x y = t x 2 t x 1 t y 2 t y 1 1 ρ s χ CO x y = 1 cos 2 δ θ 1 ρ s χ CO x y ,
ρ s = ρ s cos 2 δ θ ,
y = y 0 + a 1 exp [ ( x - x 1 ) / t 1 ] + a 2 × exp [ ( x - x 2 ) / t 2 ] ,

Metrics