Abstract

A three-frame phase-shifting algorithm with a constant but unknown phase shift is proposed. The algorithm is based on background-intensity removal prior to phase retrieval to eliminate an undetermined factor in a fringe pattern. The proposed method is validated on three-dimensional profilometry by fringe projection and on deformation measurement by means of digital speckle shearing interferometry. For a fringe pattern with slow-varying background intensity, the background removal is achieved in the frequency domain. For a speckle pattern, a background removal technique is integrated with the three-frame algorithm. In this process, manual intervention is minimal, and high computational speed is achieved. In addition, high-frequency phase signals would not be removed in the noise-reduction process as is the case in the bandpass-filtering technique. Accuracy of the method is discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription