Abstract

We demonstrate two-dimensional detection optical coherence tomography (OCT) using achromatic phase shifting with a rotating polarizer. This phase shifting, which experiences a light beam with a cyclic change in its polarization state, is, in principle, independent of wavelength. We simulated the wavelength dependence of an achromatic phase shifter using Jones calculus and found that the achromatic region exceeded 145 nm when the deviation of the phase retardation was less than ±0.5°. Using the achromatic phase shifter and a conventional phase-shift calculation method, we obtained en face OCT images of an onion at different depths. This method is effective to enhance the quality of OCT with an ultrabroad-spectrum light source.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
    [CrossRef]
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
    [CrossRef] [PubMed]
  4. W. Drexler, U. Morgner, F. Kartner, C. Pitris, S. Boppart, X. Li, E. Ippen, J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  5. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28, 182–184 (2003).
    [CrossRef] [PubMed]
  6. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  7. A. Dubois, L. Vabre, A. C. Boccara, E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
    [CrossRef] [PubMed]
  8. L. Vabre, A. Dubois, A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
    [CrossRef]
  9. B. Laude, A. De Martino, B. Drevillon, L. Benattar, L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002).
    [CrossRef] [PubMed]
  10. P. Hariharan, B. F. Oreb, T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987).
    [CrossRef] [PubMed]
  11. P. Hariharan, M. Roy, “White-light phase-stepping interferometry for surface profiling,” J. Mod. Opt. 41, 2197–2201 (1994).
    [CrossRef]
  12. P. Hariharan, M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996).
    [CrossRef]
  13. S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
    [CrossRef]
  14. S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Phase shifting by a rotating polarizer in white-light interferometry for surface profiling,” J. Mod. Opt. 46, 993–1001 (1999).
    [CrossRef]
  15. S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “White-light interferometry with polarization phase-shifter at the input of the interferometer,” J. Mod. Opt. 47, 1137–1145 (2000).
    [CrossRef]
  16. J. Kato, I. Yamaguchi, T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27, 1403–1405 (2002).
    [CrossRef]
  17. M. Roy, P. Svahn, L. Cherel, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Laser Eng. 37, 631–641 (2002).
    [CrossRef]

2003

2002

2000

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “White-light interferometry with polarization phase-shifter at the input of the interferometer,” J. Mod. Opt. 47, 1137–1145 (2000).
[CrossRef]

1999

W. Drexler, U. Morgner, F. Kartner, C. Pitris, S. Boppart, X. Li, E. Ippen, J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Phase shifting by a rotating polarizer in white-light interferometry for surface profiling,” J. Mod. Opt. 46, 993–1001 (1999).
[CrossRef]

1998

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
[CrossRef]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
[CrossRef]

1997

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

1996

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

P. Hariharan, M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996).
[CrossRef]

1994

P. Hariharan, M. Roy, “White-light phase-stepping interferometry for surface profiling,” J. Mod. Opt. 41, 2197–2201 (1994).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1987

Beaurepaire, E.

Benattar, L.

Blanchot, L.

Boccara, A. C.

Boppart, S.

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Cherel, L.

M. Roy, P. Svahn, L. Cherel, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Laser Eng. 37, 631–641 (2002).
[CrossRef]

De Martino, A.

Drevillon, B.

Drexler, W.

Dubois, A.

Eiju, T.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Drexler, U. Morgner, F. Kartner, C. Pitris, S. Boppart, X. Li, E. Ippen, J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hariharan, P.

P. Hariharan, M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996).
[CrossRef]

P. Hariharan, M. Roy, “White-light phase-stepping interferometry for surface profiling,” J. Mod. Opt. 41, 2197–2201 (1994).
[CrossRef]

P. Hariharan, B. F. Oreb, T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Helen, S. S.

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “White-light interferometry with polarization phase-shifter at the input of the interferometer,” J. Mod. Opt. 47, 1137–1145 (2000).
[CrossRef]

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Phase shifting by a rotating polarizer in white-light interferometry for surface profiling,” J. Mod. Opt. 46, 993–1001 (1999).
[CrossRef]

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E.

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Kartner, F.

Kato, J.

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Kothiyal, M. P.

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “White-light interferometry with polarization phase-shifter at the input of the interferometer,” J. Mod. Opt. 47, 1137–1145 (2000).
[CrossRef]

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Phase shifting by a rotating polarizer in white-light interferometry for surface profiling,” J. Mod. Opt. 46, 993–1001 (1999).
[CrossRef]

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Laude, B.

Lebec, M.

Li, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Matsumura, T.

Morgner, U.

Nelson, J. S.

Oreb, B. F.

Pitris, C.

W. Drexler, U. Morgner, F. Kartner, C. Pitris, S. Boppart, X. Li, E. Ippen, J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Roy, M.

M. Roy, P. Svahn, L. Cherel, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Laser Eng. 37, 631–641 (2002).
[CrossRef]

P. Hariharan, M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996).
[CrossRef]

P. Hariharan, M. Roy, “White-light phase-stepping interferometry for surface profiling,” J. Mod. Opt. 41, 2197–2201 (1994).
[CrossRef]

Saint-Jalmes, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Schwartz, L.

Sheppard, C. J. R.

M. Roy, P. Svahn, L. Cherel, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Laser Eng. 37, 631–641 (2002).
[CrossRef]

Sirohi, R. S.

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “White-light interferometry with polarization phase-shifter at the input of the interferometer,” J. Mod. Opt. 47, 1137–1145 (2000).
[CrossRef]

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Phase shifting by a rotating polarizer in white-light interferometry for surface profiling,” J. Mod. Opt. 46, 993–1001 (1999).
[CrossRef]

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
[CrossRef]

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Svahn, P.

M. Roy, P. Svahn, L. Cherel, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Laser Eng. 37, 631–641 (2002).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Vabre, L.

Wang, H. W.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Wang, Y.

Windeler, R. S.

Yamaguchi, I.

Zhao, Y.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

J. Mod. Opt.

P. Hariharan, M. Roy, “White-light phase-stepping interferometry for surface profiling,” J. Mod. Opt. 41, 2197–2201 (1994).
[CrossRef]

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Phase shifting by a rotating polarizer in white-light interferometry for surface profiling,” J. Mod. Opt. 46, 993–1001 (1999).
[CrossRef]

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “White-light interferometry with polarization phase-shifter at the input of the interferometer,” J. Mod. Opt. 47, 1137–1145 (2000).
[CrossRef]

Opt. Commun.

P. Hariharan, M. Roy, “Achromatic phase-shifting for two-wavelength phase-stepping interferometry,” Opt. Commun. 126, 220–222 (1996).
[CrossRef]

S. S. Helen, M. P. Kothiyal, R. S. Sirohi, “Achromatic phase shifting by a rotating polarizer,” Opt. Commun. 154, 249–254 (1998).
[CrossRef]

Opt. Laser Eng.

M. Roy, P. Svahn, L. Cherel, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Laser Eng. 37, 631–641 (2002).
[CrossRef]

Opt. Lett.

Science

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometric phase shifter with a rotating polarizer.

Fig. 2
Fig. 2

Wavelength dependence of the phase retardation for three configurations. The wave plates were designed from crystal quartz for a mean wavelength of 830 nm.

Fig. 3
Fig. 3

Wavelength dependence of the phase difference at the three configurations. The solid curve is the phase difference of the rotating HWP achromatic phase shifter.

Fig. 4
Fig. 4

Schematic of full-field optical coherence tomography by use of an achromatic phase shifter with a rotating polarizer. The achromatic phase shifter consists of a HWP at an azimuth of 15°, a QWP at an azimuth of 75°, and a rotating polarizer.

Fig. 5
Fig. 5

Phase shifting with a rotating polarizer at various orientations from 0° to 360° at 10° intervals. The experimental data are the average values of nine pixels from the same region of each image. The solid curve is the theoretical values calculated with the Jones matrix.

Fig. 6
Fig. 6

Linear and logarithmic scales of an axial profile that were observed from interference components.

Fig. 7
Fig. 7

(a) Schematic of an imaging target consisting of two test patterns. (b) Coherence gate and focal plane were positioned on the rear surface of the positive test pattern. (c) Coherence gate and focal plane were positioned on the rear surface of the negative test pattern.

Fig. 8
Fig. 8

(a) Microscopic image of an onion as reference. The image measures 486 μm × 400 μm. (b) Interference fringe at an onion surface. En face OCT images of an onion at different depths: (c) 0 (surface), (d) 100, and (e) 200 μm. The gray scale is logarithmic. The image size is 200 μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ E R - x E R - y ] = P ( θ ) E ¯ in = [ cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ ] [ 1 i ] = [ cos θ sin θ ] exp ( i θ ) ,
[ E L - x E L - y ] = P ( θ ) E ¯ in = [ cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ ] [ 1 - i ] = [ cos θ sin θ ] exp ( i θ ) ,
[ E x E y ] = WP ( δ 2 , 75 ° ) WP ( δ 1 , 15 ° ) [ 1 0 ] ,
WP ( δ , θ ) = [ cos ( δ / 2 ) + j sin ( δ / 2 ) cos 2 θ j sin ( δ / 2 ) sin 2 θ j sin ( δ / 2 ) sin 2 θ cos ( δ / 2 ) - j sin ( δ / 2 ) cos 2 θ ] .
[ E x E y ] = WP ( δ 2 , 101 ° ) WP ( δ 1 , 34 ° ) WP ( δ 1 , 6 ° ) [ 1 0 ] .
n 2 = B 1 + B 2 λ 2 + B 3 / λ 3 + C 1 / λ 4 + C 2 / λ 6 + C 3 / λ 8 ,
I 2 θ = I S + I R + 2 I S I R cos ( ϕ + 2 θ ) ,
I = 2 I S I R = [ ( 2 I 120 - I 0 - I 240 ) 2 + 3 ( I 0 - I 240 ) 2 ] 1 / 2 / 3.

Metrics