Abstract

I have constructed a 13m-diameter telescope using separate, low-quality spherical primary mirror segments. A single hologram of the mirrors is used to correct the random surface distortions as well as spherical aberration, while simultaneously phasing the individual apertures together. I present experimental results of the removal of an error of thousands of waves to produce a diffraction-limited instrument operating over a narrow bandwidth. This technique promises to have many benefits in future space-based telescopes for imaging, lidar, and optical communications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. N. Denisyuk, S. I. Soskin, “Holographic correction of deformational aberrations of the main mirror of a telescope,” Opt. Spectrosc. 31, 535–538 (1971).
  2. S. I. Soskin, Y. N. Denisyuk, “Holographic correction of optical-system aberrations caused by main-mirror deformation,” Opt. Spectrosc. 33, 544–545 (1972).
  3. J. Munch, R. Wuerker, “Holographic technique for correcting aberrations in a telescope,” Appl. Opt. 28, 1312–1317 (1989).
    [CrossRef] [PubMed]
  4. J. Munch, R. Wuerker, L. Heflinger, “Wideband holographic correction of an aberrated telescope objective,” Appl. Opt. 29, 2440–2445 (1990).
    [CrossRef] [PubMed]
  5. R. B. Andreev, V. M. Irtuganov, A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with the overall compensation for the distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
    [CrossRef]
  6. G. Andersen, R. J. Knize, “Holographically corrected telescope for high bandwidth optical communications,” Appl. Opt. 38, 6833–6835 (1999).
    [CrossRef]
  7. M. T. Gruneisen, T. Martinez, D. L. Lubin, “Dynamic holography for high-dynamic-range two-dimensional laser wavefront control,” in High-Resolution Wavefront Control: Methods, Devices, and Applications III, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE4493, 224–238 (2001).
    [CrossRef]
  8. G. Andersen, R. J. Knize, “Large-aperture holographically corrected membrane telescope,” Opt. Eng. 41, 1603–1607 (2002).
    [CrossRef]
  9. G. Andersen, “Holographic sparse-aperture telescope for space,” in Optical, Infrared and Millimeter Space Telescopes,J. C. Mather, ed., Proc. SPIE5487, 1129–1136 (2004).
    [CrossRef]
  10. P. C. Chen, R. J. Oliversen, R. C. Romeo, “Fabrication and testing of ultra lightweight gossamer class composite mirrors,” in Highly Innovative Space Telescope Concepts, H. A. MacEwen, ed., Proc. SPIE4849, 339–347 (2002).
    [CrossRef]
  11. R. C. Romeo, P. C. Chen, “CFRP composite thin-shelled mirrors for the future space telescopes,” in High-Contrast Imaging for Exo-Planet Detection, A. G. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 351–360 (2002).
  12. P. C. Chen, C. W. Bowers, D. A. Content, M. Marzouk, R. C. Romeo, “Advances in very lightweight composite mirror technology,” Opt. Eng. 39, 2320–2329 (2000).
    [CrossRef]
  13. B. Meinel, M. P. Meinel, “Large sparse-aperture space optical systems,” Opt. Eng. 41, 1983–1994 (2002).
    [CrossRef]
  14. R. Fiete, T. A. Tantalo, J. R. Calus, J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
    [CrossRef]

2002 (3)

G. Andersen, R. J. Knize, “Large-aperture holographically corrected membrane telescope,” Opt. Eng. 41, 1603–1607 (2002).
[CrossRef]

B. Meinel, M. P. Meinel, “Large sparse-aperture space optical systems,” Opt. Eng. 41, 1983–1994 (2002).
[CrossRef]

R. Fiete, T. A. Tantalo, J. R. Calus, J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[CrossRef]

2000 (1)

P. C. Chen, C. W. Bowers, D. A. Content, M. Marzouk, R. C. Romeo, “Advances in very lightweight composite mirror technology,” Opt. Eng. 39, 2320–2329 (2000).
[CrossRef]

1999 (1)

1990 (1)

1989 (1)

1972 (1)

S. I. Soskin, Y. N. Denisyuk, “Holographic correction of optical-system aberrations caused by main-mirror deformation,” Opt. Spectrosc. 33, 544–545 (1972).

1971 (1)

Y. N. Denisyuk, S. I. Soskin, “Holographic correction of deformational aberrations of the main mirror of a telescope,” Opt. Spectrosc. 31, 535–538 (1971).

Andersen, G.

G. Andersen, R. J. Knize, “Large-aperture holographically corrected membrane telescope,” Opt. Eng. 41, 1603–1607 (2002).
[CrossRef]

G. Andersen, R. J. Knize, “Holographically corrected telescope for high bandwidth optical communications,” Appl. Opt. 38, 6833–6835 (1999).
[CrossRef]

G. Andersen, “Holographic sparse-aperture telescope for space,” in Optical, Infrared and Millimeter Space Telescopes,J. C. Mather, ed., Proc. SPIE5487, 1129–1136 (2004).
[CrossRef]

Andreev, R. B.

R. B. Andreev, V. M. Irtuganov, A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with the overall compensation for the distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Bowers, C. W.

P. C. Chen, C. W. Bowers, D. A. Content, M. Marzouk, R. C. Romeo, “Advances in very lightweight composite mirror technology,” Opt. Eng. 39, 2320–2329 (2000).
[CrossRef]

Calus, J. R.

R. Fiete, T. A. Tantalo, J. R. Calus, J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[CrossRef]

Chen, P. C.

P. C. Chen, C. W. Bowers, D. A. Content, M. Marzouk, R. C. Romeo, “Advances in very lightweight composite mirror technology,” Opt. Eng. 39, 2320–2329 (2000).
[CrossRef]

P. C. Chen, R. J. Oliversen, R. C. Romeo, “Fabrication and testing of ultra lightweight gossamer class composite mirrors,” in Highly Innovative Space Telescope Concepts, H. A. MacEwen, ed., Proc. SPIE4849, 339–347 (2002).
[CrossRef]

R. C. Romeo, P. C. Chen, “CFRP composite thin-shelled mirrors for the future space telescopes,” in High-Contrast Imaging for Exo-Planet Detection, A. G. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 351–360 (2002).

Content, D. A.

P. C. Chen, C. W. Bowers, D. A. Content, M. Marzouk, R. C. Romeo, “Advances in very lightweight composite mirror technology,” Opt. Eng. 39, 2320–2329 (2000).
[CrossRef]

Denisyuk, Y. N.

S. I. Soskin, Y. N. Denisyuk, “Holographic correction of optical-system aberrations caused by main-mirror deformation,” Opt. Spectrosc. 33, 544–545 (1972).

Y. N. Denisyuk, S. I. Soskin, “Holographic correction of deformational aberrations of the main mirror of a telescope,” Opt. Spectrosc. 31, 535–538 (1971).

Fiete, R.

R. Fiete, T. A. Tantalo, J. R. Calus, J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[CrossRef]

Gruneisen, M. T.

M. T. Gruneisen, T. Martinez, D. L. Lubin, “Dynamic holography for high-dynamic-range two-dimensional laser wavefront control,” in High-Resolution Wavefront Control: Methods, Devices, and Applications III, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE4493, 224–238 (2001).
[CrossRef]

Heflinger, L.

Irtuganov, V. M.

R. B. Andreev, V. M. Irtuganov, A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with the overall compensation for the distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Knize, R. J.

G. Andersen, R. J. Knize, “Large-aperture holographically corrected membrane telescope,” Opt. Eng. 41, 1603–1607 (2002).
[CrossRef]

G. Andersen, R. J. Knize, “Holographically corrected telescope for high bandwidth optical communications,” Appl. Opt. 38, 6833–6835 (1999).
[CrossRef]

Leshchev, A.

R. B. Andreev, V. M. Irtuganov, A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with the overall compensation for the distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Lubin, D. L.

M. T. Gruneisen, T. Martinez, D. L. Lubin, “Dynamic holography for high-dynamic-range two-dimensional laser wavefront control,” in High-Resolution Wavefront Control: Methods, Devices, and Applications III, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE4493, 224–238 (2001).
[CrossRef]

Martinez, T.

M. T. Gruneisen, T. Martinez, D. L. Lubin, “Dynamic holography for high-dynamic-range two-dimensional laser wavefront control,” in High-Resolution Wavefront Control: Methods, Devices, and Applications III, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE4493, 224–238 (2001).
[CrossRef]

Marzouk, M.

P. C. Chen, C. W. Bowers, D. A. Content, M. Marzouk, R. C. Romeo, “Advances in very lightweight composite mirror technology,” Opt. Eng. 39, 2320–2329 (2000).
[CrossRef]

Meinel, B.

B. Meinel, M. P. Meinel, “Large sparse-aperture space optical systems,” Opt. Eng. 41, 1983–1994 (2002).
[CrossRef]

Meinel, M. P.

B. Meinel, M. P. Meinel, “Large sparse-aperture space optical systems,” Opt. Eng. 41, 1983–1994 (2002).
[CrossRef]

Mooney, J. A.

R. Fiete, T. A. Tantalo, J. R. Calus, J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[CrossRef]

Munch, J.

Oliversen, R. J.

P. C. Chen, R. J. Oliversen, R. C. Romeo, “Fabrication and testing of ultra lightweight gossamer class composite mirrors,” in Highly Innovative Space Telescope Concepts, H. A. MacEwen, ed., Proc. SPIE4849, 339–347 (2002).
[CrossRef]

Romeo, R. C.

P. C. Chen, C. W. Bowers, D. A. Content, M. Marzouk, R. C. Romeo, “Advances in very lightweight composite mirror technology,” Opt. Eng. 39, 2320–2329 (2000).
[CrossRef]

P. C. Chen, R. J. Oliversen, R. C. Romeo, “Fabrication and testing of ultra lightweight gossamer class composite mirrors,” in Highly Innovative Space Telescope Concepts, H. A. MacEwen, ed., Proc. SPIE4849, 339–347 (2002).
[CrossRef]

R. C. Romeo, P. C. Chen, “CFRP composite thin-shelled mirrors for the future space telescopes,” in High-Contrast Imaging for Exo-Planet Detection, A. G. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 351–360 (2002).

Semenov, P. M.

R. B. Andreev, V. M. Irtuganov, A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with the overall compensation for the distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Soskin, S. I.

S. I. Soskin, Y. N. Denisyuk, “Holographic correction of optical-system aberrations caused by main-mirror deformation,” Opt. Spectrosc. 33, 544–545 (1972).

Y. N. Denisyuk, S. I. Soskin, “Holographic correction of deformational aberrations of the main mirror of a telescope,” Opt. Spectrosc. 31, 535–538 (1971).

Tantalo, T. A.

R. Fiete, T. A. Tantalo, J. R. Calus, J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[CrossRef]

Vasil’ev, M. V.

R. B. Andreev, V. M. Irtuganov, A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with the overall compensation for the distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Venediktov, V. Y.

R. B. Andreev, V. M. Irtuganov, A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with the overall compensation for the distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

Wuerker, R.

Appl. Opt. (3)

Opt. Eng. (4)

P. C. Chen, C. W. Bowers, D. A. Content, M. Marzouk, R. C. Romeo, “Advances in very lightweight composite mirror technology,” Opt. Eng. 39, 2320–2329 (2000).
[CrossRef]

B. Meinel, M. P. Meinel, “Large sparse-aperture space optical systems,” Opt. Eng. 41, 1983–1994 (2002).
[CrossRef]

R. Fiete, T. A. Tantalo, J. R. Calus, J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[CrossRef]

G. Andersen, R. J. Knize, “Large-aperture holographically corrected membrane telescope,” Opt. Eng. 41, 1603–1607 (2002).
[CrossRef]

Opt. Spectrosc. (2)

Y. N. Denisyuk, S. I. Soskin, “Holographic correction of deformational aberrations of the main mirror of a telescope,” Opt. Spectrosc. 31, 535–538 (1971).

S. I. Soskin, Y. N. Denisyuk, “Holographic correction of optical-system aberrations caused by main-mirror deformation,” Opt. Spectrosc. 33, 544–545 (1972).

Other (5)

R. B. Andreev, V. M. Irtuganov, A. Leshchev, P. M. Semenov, M. V. Vasil’ev, V. Y. Venediktov, “Experimental realization of the laser telescope with the overall compensation for the distortions via phase conjugation,” in Space Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE2478, 324–327 (1995).
[CrossRef]

G. Andersen, “Holographic sparse-aperture telescope for space,” in Optical, Infrared and Millimeter Space Telescopes,J. C. Mather, ed., Proc. SPIE5487, 1129–1136 (2004).
[CrossRef]

P. C. Chen, R. J. Oliversen, R. C. Romeo, “Fabrication and testing of ultra lightweight gossamer class composite mirrors,” in Highly Innovative Space Telescope Concepts, H. A. MacEwen, ed., Proc. SPIE4849, 339–347 (2002).
[CrossRef]

R. C. Romeo, P. C. Chen, “CFRP composite thin-shelled mirrors for the future space telescopes,” in High-Contrast Imaging for Exo-Planet Detection, A. G. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 351–360 (2002).

M. T. Gruneisen, T. Martinez, D. L. Lubin, “Dynamic holography for high-dynamic-range two-dimensional laser wavefront control,” in High-Resolution Wavefront Control: Methods, Devices, and Applications III, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, eds., Proc. SPIE4493, 224–238 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Recording. A plane wave incident on the aberrated mirror is focused and collected by a secondary. A hologram is recorded between this beam and a plane-wave reference beam. (b) Replay. Distant light is focused by the aberrated mirror to reconstruct the reference beam. By focusing this diffraction-limited beam, an unaberrated image of the distant object can be formed.

Fig. 2
Fig. 2

(a) Twin graphite composite mirrors. Reflected in the mirrors are the collimator (left) and the author. (b) A contact print of the image of the illuminated aperture (0.983 m × 0.6 m) at the plane of the hologram having dimensions of 49 mm × 30 mm. (c) An interferogram of a single aberrated mirror from the center of curvature. (d) An interferogram of the corrected wave front. (e) The paraxial focus of the twin mirrors (26.6 mm × 16.5 mm). (f) The corrected focus. (g) An image of a U.S. Air Force 1951 resolution test target at the focus of the twin mirrors, with the largest bars on the left being those of column 2. (h) An image of the resolution target after correction. Note the contrast in images (g) and (h) were increased slightly for clarity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ rec ϕ final ϕ initial .

Metrics