Abstract

A UV Rayleigh–Mie scattering lidar has been developed for daytime measurement of temperature and aerosol optical properties in the troposphere. The transmitter is a narrowband, injection-seeded, pulsed, third-harmonic Nd:YAG laser at an eye-safe wavelength of 355 nm. Two Fabry–Perot etalons (FPEs) with a dual-pass optical layout filter the molecular Rayleigh scattering components spectrally for retrieval of the temperature and provide a high rejection rate for aerosol Mie scattering in excess of 43 dB. The Mie signal is filtered with a third FPE filter for direct profiling of aerosol optical properties. The Mie scattering component in the Rayleigh signals, which will have influence on temperature measurements, is corrected by using a measure of aerosol scattering because of the relative insufficiency of Mie rejection of Rayleigh filters in the presence of dense aerosols or clouds, and the Mie rejection capability of system is thus improved. A narrowband interference filter is incorporated with the FPEs to block solar radiation. Also, the small field of view (0.1 mrad) of the receiver and the UV wavelength used enhance the ability of the lidar to suppress the solar background signal in daytime measurement. The system is relatively compact, with a power–aperture product of 0.18 W m−2, and has a high sensitivity to temperature change (0.62%/K). Lidar measurements taken under different weather conditions (winter and summer) are demonstrated. Good agreement between the lidar and the radiosonde measurements was obtained in terms of lapse rates and inversions. Statistical temperature errors of less than 1 K up to a height of 2 km are obtainable, with an averaging time of ~12 min for daytime measurements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
    [CrossRef]
  2. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” Appl. Meteorol. 11, 108–112 (1972).
    [CrossRef]
  3. G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Phys. Sci. 229, 78–79 (1971).
    [CrossRef]
  4. J. W. Hair, L. M. Caldwell, D. A. Krueger, C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
    [CrossRef]
  5. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef] [PubMed]
  6. N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  7. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgrat, T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
    [CrossRef]
  8. Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
    [CrossRef]
  9. C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High spectral resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
    [CrossRef] [PubMed]
  10. J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
    [CrossRef] [PubMed]
  11. J. A. McKay, “Single and tandem Fabry–Perot etalons as solar background filters for lidar,” Appl. Opt. 38, 5851–5858 (1999).
    [CrossRef]
  12. D. Hua, M. Uchida, T. Kobayashi, “Ultraviolet high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry–Perot etalon for measuring atmospheric temperature profiles of the troposphere,” Opt. Lett. 29, 1063–1065 (2004).
    [CrossRef] [PubMed]
  13. D. Hua, M. Uchida, T. Kobayashi, “Ultraviolet Rayleigh–Mie lidar with Mie scattering correction by Fabry–Perot etalon for temperature profiling of the troposphere,” Appl. Opt. 44, 1305–1314 (2005).
    [CrossRef] [PubMed]
  14. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  15. Y. Arshinov, S. Bobrovnikov, “Use of a Fabry–Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
    [CrossRef]

2005 (1)

2004 (1)

2002 (1)

2001 (1)

1999 (3)

1996 (1)

1995 (1)

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

1993 (2)

N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

1992 (1)

1974 (1)

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

1972 (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

1971 (1)

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Abreu, V. J.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Alvarez, R. J.

Arshinov, Y.

Barnes, J. E.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Baumgrat, R.

Behrendt, A.

Beneditti-Machelangeli, G.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Bobrovnikov, S.

Boley, C. D.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Caldwell, L. M.

Chanin, M. L.

N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Cooney, J.

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Desai, R. C.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Fiocco, G.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Fischer, K. F.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Hair, J. W.

Hauchecorne, A.

N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Hua, D.

Irgang, T. D.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Kobayashi, T.

Krueger, D. A.

Lahmann, W.

Liu, Z.

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Madonna, E.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Maschberger, K.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Matsui, I.

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

McGill, M. J.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

McKay, J. A.

Mitev, V.

Nakamura, T.

Nedeljkovic, N.

N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Onishi, M.

Pepler, S. J.

She, C. Y.

Skinner, W. R.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Sugimoto, N.

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Tenti, G.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Thomas, L.

Tsuda, T.

Uchida, M.

Vaughan, G.

Wareing, D. P.

Weitkamp, C.

Zeyn, J.

Appl. Meteorol. (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Appl. Opt. (6)

Can. J. Phys. (1)

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

IEEE Trans. Geosci. Remote Sens. (1)

N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Nature Phys. Sci. (1)

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Opt. Eng. (2)

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the UV Rayleigh-Mie lidar system. Abbreviations have and in subsequent figures are defined in text.

Fig. 2
Fig. 2

Transmission characteristics of the filters measured by scanning the pulsed laser frequency.

Fig. 3
Fig. 3

Spectra of the Mie and Rayleigh scattering signals and the frequency range of the filters of the UV Rayleigh–Mie lidar system.

Fig. 4
Fig. 4

Range-corrected lidar signals and backscatter ratio (Na/Nm).

Fig. 5
Fig. 5

Comparison of the temperature profiles without and with Mie correction.

Fig. 6
Fig. 6

Range-corrected lidar signals and backscatter ratio with ~3.5-min observation time and 180-mJ laser energy. The data displayed here have been corrected for background noise and were smoothed with a 60-m-long sliding window.

Fig. 7
Fig. 7

Comparison of the temperature profiles of lidar and radiosonde measurements taken at 21:00–21:12 JST on 3 August 2003. The lidar temperature was derived from the signals in Fig. 6. The curve at the right shows the statistical temperature error that is due to signal noise.

Fig. 8
Fig. 8

Temperature profiles taken by the lidar and the radiosonde at 03:00–03:12 JST on 18 November 2003. The curve at the right shows the statistical temperature error of the lidar that is due to noise. The measurement conditions of the lidar and of the radiosonde were the same as those shown in Fig. 6.

Fig. 9
Fig. 9

Normalized lidar signals. Data shown here have already been corrected for background noise and were then smoothed with a 60-m-long sliding window.

Fig. 10
Fig. 10

Temperature profiles of the lidar and the radiosonde measurements taken at 15:00–15:12 JST on 3 August 2003. The curve at the right shows the statistical temperature error that is due to noise. The raw data were smoothed afterward with a 180-m-long sliding window.

Tables (1)

Tables Icon

Table 1 Specifications of the Lidar System

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N i = N i - k i f i a N a             ( i = 1 ,     2 ) ,
H s = ( N 1 - N 2 ) / N 1 ,
Θ = 1 H s H s T ,
T ( z ) = T ( z 0 ) + [ H s ( z ) - H s ( z 0 ) ] / Θ ,
Δ T = 1 / ( S / N ) Θ .

Metrics