Abstract

A Rayleigh–Mie-scattering lidar system at an eye-safe 355-nm ultraviolet wavelength that is based on a high-spectral-resolution lidar technique is demonstrated for measuring the vertical temperature profile of the troposphere. Two Rayleigh signals, which determine the atmospheric temperature, are filtered with two Fabry–Perot etalon filters. The filters are located on the same side of the wings of the Rayleigh-scattering spectrum and are optically constructed with a dual-pass optical layout. This configuration achieves a high rejection rate for Mie scattering and reasonable transmission for Rayleigh scattering. The Mie signal is detected with a third Fabry–Perot etalon filter, which is centered at the laser frequency. The filter parameters were optimized by numerical calculation; the results showed a Mie rejection of ~ −45 dB, and Rayleigh transmittance greater than 1% could be achieved for the two Rayleigh channels. A Mie correction method is demonstrated that uses an independent measure of the aerosol scattering to correct the temperature measurements that have been influenced by the aerosols and clouds. Simulations and preliminary experiments have demonstrated that the performance of the dual-pass etalon and Mie correction method is highly effective in practical applications. Simulation results have shown that the temperature errors that are due to noise are less than 1 K up to a height of 4 km for daytime measurement for 300 W m−2 sr−1 μm−1 sky brightness with a lidar system that uses 200 mJ of laser energy, a 3.5-min integration time, and a 25-cm telescope.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kobayashi, “Techniques for laser remote sensing of the environment,” Remote Sens. Rev. 3, 1–56 (1987).
    [CrossRef]
  2. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).
  3. A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
    [CrossRef]
  4. J. E. Kalshoven, C. L. Korb, G. K. Schwemmer, M. Dombrowski, “Laser remote sensing of atmospheric temperature by observing resonant absorption of oxygen,” Appl. Opt. 20, 1967–1971 (1981).
    [CrossRef] [PubMed]
  5. F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
    [CrossRef]
  6. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef] [PubMed]
  7. N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  8. A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference filter based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
    [CrossRef]
  9. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgrat, T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
    [CrossRef]
  10. G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Physical Sci. 229, 78–79 (1971).
    [CrossRef]
  11. R. L. Schwiesow, L. Lading, “Temperature profiling by Rayleigh scattering lidar,” Appl. Opt. 20, 1972–1979 (1981).
    [CrossRef] [PubMed]
  12. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
    [CrossRef] [PubMed]
  13. H. Shimizu, K. Nogachi, C. Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25, 1460–1466 (1986).
    [CrossRef] [PubMed]
  14. C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High spectral resolution Rayleigh-Mie Lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
    [CrossRef] [PubMed]
  15. D. A. Krueger, L. M. Caldwell, R. J. Alvarez, C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
    [CrossRef]
  16. C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
    [CrossRef]
  17. Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
    [CrossRef]
  18. J. W. Hair, L. M. Caldwell, D. A. Krueger, C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
    [CrossRef]
  19. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Tauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
    [CrossRef] [PubMed]
  20. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
    [CrossRef] [PubMed]
  21. Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41, 7079–7086 (2002).
    [CrossRef] [PubMed]
  22. D. Hua, M. Uchida, M. Imaki, T. Kobayashi, “UV Rayleigh lidar with Mie scattering intensity correction techniques for measuring atmospheric temperature profiles in the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 488–495 (2002).
    [CrossRef]
  23. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  24. B. J. Rye, “Molecular backscatter heterodyne lidar: a computational evaluation,” Appl. Opt. 37, 6321–6328 (1998).
    [CrossRef]
  25. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1978).
    [CrossRef]
  26. L. N. Durvasula, R. W. Gammon, “Pressure scanned three-pass Fabry–Perot interferometer,” Appl. Opt. 17, 3298–3303 (1978).
    [CrossRef] [PubMed]
  27. G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, 1988).
  28. R. A. McClatchey, A. P. D’Agati, “Atmospheric transmission of laser radiation: computer code LASER,” , Environment Research Paper 622 (U.S. Air Force Geophysics Laboratory and Air Force Systems Command, Hanscom Air Force Base, Mass., 1978), p. 24.
  29. D. Hua, M. Uchida, T. Kobayashi, “UV high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry–Perot etalon for measuring atmospheric temperature profiles of the troposphere,” Opt. Lett. 29, 1063–1065 (2004).
    [CrossRef] [PubMed]
  30. D. Hua, M. Uchida, T. Kobayashi, “Ultraviolet Rayleigh–Mie lidar for temperature profiling of the troposphere,” Appl. Opt. 44, 1315–1322 (2005).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

2002 (2)

2001 (1)

2000 (1)

1999 (1)

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

1998 (1)

1994 (1)

1993 (5)

N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

D. A. Krueger, L. M. Caldwell, R. J. Alvarez, C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
[CrossRef]

C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

1992 (1)

1987 (1)

T. Kobayashi, “Techniques for laser remote sensing of the environment,” Remote Sens. Rev. 3, 1–56 (1987).
[CrossRef]

1986 (1)

1983 (2)

1981 (2)

1980 (1)

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

1978 (1)

1974 (1)

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

1971 (1)

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Physical Sci. 229, 78–79 (1971).
[CrossRef]

Alvarez, R. J.

D. A. Krueger, L. M. Caldwell, R. J. Alvarez, C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
[CrossRef]

C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High spectral resolution Rayleigh-Mie Lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
[CrossRef] [PubMed]

Baumgrat, R.

Behrendt, A.

Beneditti-Machelangeli, G.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Physical Sci. 229, 78–79 (1971).
[CrossRef]

Boley, C. D.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Bösenberg, J.

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
[CrossRef]

Caldwell, L. M.

Chanin, M. L.

N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

Chen, W. B.

D’Agati, A. P.

R. A. McClatchey, A. P. D’Agati, “Atmospheric transmission of laser radiation: computer code LASER,” , Environment Research Paper 622 (U.S. Air Force Geophysics Laboratory and Air Force Systems Command, Hanscom Air Force Base, Mass., 1978), p. 24.

Desai, R. C.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Dombrowski, M.

Durvasula, L. N.

Eloranta, E. W.

Fiocco, G.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Physical Sci. 229, 78–79 (1971).
[CrossRef]

Gammon, R. W.

Hair, J. W.

Hauchecorne, A.

N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

Hernandez, G.

G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, 1988).

Hua, D.

D. Hua, M. Uchida, T. Kobayashi, “Ultraviolet Rayleigh–Mie lidar for temperature profiling of the troposphere,” Appl. Opt. 44, 1315–1322 (2005).
[CrossRef] [PubMed]

D. Hua, M. Uchida, T. Kobayashi, “UV high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry–Perot etalon for measuring atmospheric temperature profiles of the troposphere,” Opt. Lett. 29, 1063–1065 (2004).
[CrossRef] [PubMed]

D. Hua, M. Uchida, M. Imaki, T. Kobayashi, “UV Rayleigh lidar with Mie scattering intensity correction techniques for measuring atmospheric temperature profiles in the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 488–495 (2002).
[CrossRef]

Imaki, M.

D. Hua, M. Uchida, M. Imaki, T. Kobayashi, “UV Rayleigh lidar with Mie scattering intensity correction techniques for measuring atmospheric temperature profiles in the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 488–495 (2002).
[CrossRef]

Kalshoven, J. E.

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1978).
[CrossRef]

Kobayashi, T.

D. Hua, M. Uchida, T. Kobayashi, “Ultraviolet Rayleigh–Mie lidar for temperature profiling of the troposphere,” Appl. Opt. 44, 1315–1322 (2005).
[CrossRef] [PubMed]

D. Hua, M. Uchida, T. Kobayashi, “UV high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry–Perot etalon for measuring atmospheric temperature profiles of the troposphere,” Opt. Lett. 29, 1063–1065 (2004).
[CrossRef] [PubMed]

T. Kobayashi, “Techniques for laser remote sensing of the environment,” Remote Sens. Rev. 3, 1–56 (1987).
[CrossRef]

D. Hua, M. Uchida, M. Imaki, T. Kobayashi, “UV Rayleigh lidar with Mie scattering intensity correction techniques for measuring atmospheric temperature profiles in the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 488–495 (2002).
[CrossRef]

Korb, C. L.

Krueger, D. A.

Lading, L.

Lee, S. A.

Liu, J. T.

Liu, Z.

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Liu, Z. S.

Madonna, E.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Physical Sci. 229, 78–79 (1971).
[CrossRef]

Maschberger, K.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Physical Sci. 229, 78–79 (1971).
[CrossRef]

Matsui, I.

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

McClatchey, R. A.

R. A. McClatchey, A. P. D’Agati, “Atmospheric transmission of laser radiation: computer code LASER,” , Environment Research Paper 622 (U.S. Air Force Geophysics Laboratory and Air Force Systems Command, Hanscom Air Force Base, Mass., 1978), p. 24.

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).

Mitev, V.

Nakamura, T.

Nedeljkovic, N.

N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Nogachi, K.

Onishi, M.

Pepler, S. J.

Piironen, P.

Reichardt, J.

Roesler, F. L.

Rojas, R.

C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

Rye, B. J.

Sargoytchev, S. I.

C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

Schwemmer, G. K.

Schwiesow, R. L.

She, C. Y.

Shimizu, H.

Shipley, S. T.

Song, X. Q.

Sroga, J. T.

Sugimoto, N.

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Tauger, J. T.

Tenti, G.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Tepley, C. A.

C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

Theopold, F. A.

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
[CrossRef]

Thomas, L.

Tracy, D. H.

Tsuda, T.

Uchida, M.

D. Hua, M. Uchida, T. Kobayashi, “Ultraviolet Rayleigh–Mie lidar for temperature profiling of the troposphere,” Appl. Opt. 44, 1315–1322 (2005).
[CrossRef] [PubMed]

D. Hua, M. Uchida, T. Kobayashi, “UV high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry–Perot etalon for measuring atmospheric temperature profiles of the troposphere,” Opt. Lett. 29, 1063–1065 (2004).
[CrossRef] [PubMed]

D. Hua, M. Uchida, M. Imaki, T. Kobayashi, “UV Rayleigh lidar with Mie scattering intensity correction techniques for measuring atmospheric temperature profiles in the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 488–495 (2002).
[CrossRef]

Vaughan, G.

Wareing, D. P.

Weinman, J. A.

Wu, D.

Zhang, K. L.

Appl. Opt. (13)

L. N. Durvasula, R. W. Gammon, “Pressure scanned three-pass Fabry–Perot interferometer,” Appl. Opt. 17, 3298–3303 (1978).
[CrossRef] [PubMed]

J. E. Kalshoven, C. L. Korb, G. K. Schwemmer, M. Dombrowski, “Laser remote sensing of atmospheric temperature by observing resonant absorption of oxygen,” Appl. Opt. 20, 1967–1971 (1981).
[CrossRef] [PubMed]

R. L. Schwiesow, L. Lading, “Temperature profiling by Rayleigh scattering lidar,” Appl. Opt. 20, 1972–1979 (1981).
[CrossRef] [PubMed]

H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
[CrossRef] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Tauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

H. Shimizu, K. Nogachi, C. Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25, 1460–1466 (1986).
[CrossRef] [PubMed]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

B. J. Rye, “Molecular backscatter heterodyne lidar: a computational evaluation,” Appl. Opt. 37, 6321–6328 (1998).
[CrossRef]

A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference filter based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

J. W. Hair, L. M. Caldwell, D. A. Krueger, C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
[CrossRef]

Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41, 7079–7086 (2002).
[CrossRef] [PubMed]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgrat, T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
[CrossRef]

D. Hua, M. Uchida, T. Kobayashi, “Ultraviolet Rayleigh–Mie lidar for temperature profiling of the troposphere,” Appl. Opt. 44, 1315–1322 (2005).
[CrossRef] [PubMed]

Can. J. Phys. (1)

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Geophys. Res. Lett. (1)

A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

D. A. Krueger, L. M. Caldwell, R. J. Alvarez, C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993).
[CrossRef]

Nature Physical Sci. (1)

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Physical Sci. 229, 78–79 (1971).
[CrossRef]

Opt. Eng. (1)

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Opt. Lett. (3)

Remote Sens. Rev. (1)

T. Kobayashi, “Techniques for laser remote sensing of the environment,” Remote Sens. Rev. 3, 1–56 (1987).
[CrossRef]

Other (5)

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).

D. Hua, M. Uchida, M. Imaki, T. Kobayashi, “UV Rayleigh lidar with Mie scattering intensity correction techniques for measuring atmospheric temperature profiles in the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 488–495 (2002).
[CrossRef]

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1978).
[CrossRef]

G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, 1988).

R. A. McClatchey, A. P. D’Agati, “Atmospheric transmission of laser radiation: computer code LASER,” , Environment Research Paper 622 (U.S. Air Force Geophysics Laboratory and Air Force Systems Command, Hanscom Air Force Base, Mass., 1978), p. 24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spectral diagram of Mie and Rayleigh scattering signals and filters for the UV Rayleigh–Mie lidar system.

Fig. 2
Fig. 2

Schematics of the two optical layouts for FPE (FB Etalon) filters: M, mirror; PMTs, photomultiplier tubes.

Fig. 3
Fig. 3

Contour plots of the temperature coefficient of an individual filter versus its position (CFSP) and bandwidth at T = 250 K with a beam divergence of 1.0 mrad.

Fig. 4
Fig. 4

Contour plots of Rayleigh transmission for an individual filter as a function of its position (CFSP) and bandwidth with T = 250 K and a beam divergence of 1.0 mrad.

Fig. 5
Fig. 5

Schematic of the Rayleigh–Mie lidar system. Photomultiplier tubes PMT-1–PMT-4 are detectors for Rayleigh channels and Mie scattering and for energy monitoring, as marked.

Fig. 6
Fig. 6

Profile of atmospheric backscatter ratio rs versus height used for numerical calculation.

Fig. 7
Fig. 7

Statistical temperature errors versus height calculated with the parameters shown for daytime and nighttime measurements.

Fig. 8
Fig. 8

Temperature profiles versus height. Dashed curves were derived without Mie correction; solid curves had Mie correction.

Fig. 9
Fig. 9

Temperature profiles measured at 22:00 Japan Standard Time on 5 December 2002. Dashed curve at left, temperature profile derived directly from the two Rayleigh signals; solid curve, derived with Mie correction. The curve at the right shows the statistical temperature error that is due to noise.

Tables (1)

Tables Icon

Table 1 System Parameters

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Δ ν T = ( 32 κ T ln 2 / λ 0 2 M ) 1 / 2 ,
f i a ( ν ) = h a ( ν - ν ) G i ( ν ) d ν ,
f i m ( ν ,     T ) = h m ( ν - ν ,     T ) G i ( ν ) d ν .
N m = ( E 0 / h ν ) ( A / z 2 ) Δ z β m exp [ - 2 α ( z ) d z ] ,
N a = ( E 0 / h ν ) ( A / z 2 ) Δ z β a exp [ - 2 α ( z ) d z ] ,
N i m = k i f i m N m ,
N i a = k i f i a N a ,
H s = ( N 1 - N 2 ) / N 1 ,
H s = r s ( k 1 f 1 a - k 2 f 2 a ) + ( k 1 f 1 m - k 2 f 2 m ) k 1 ( r s f 1 a - f 1 m ) ,
r s = N a / N m
Θ = 1 H s H s T .
Ψ i = 1 N i N i T ( i = 1 , 2 ) ,
Θ = ( H s - 1 - 1 ) ( Ψ 1 - Ψ 2 ) .
Δ T = 1 / ( S / N ) Θ ,
( S / N ) = [ ( S / N ) 1 - 2 + ( S / N ) 2 - 2 ] - 1 / 2 ,
( S / N ) i = n k i f m N m ( k i f m N m + k i f i a N a + N i s + N d ) 1 / 2             ( i = 1 ,     2 ) ,
g ( ν ) = 2 θ max 2 0 θ max A ( ν ,     θ ) T p θ d θ ,
A ( ν ,     θ ) = [ 1 + 4 F 2 π 2 sin 2 ( π ν cos θ ν f ) ] - 1
N i = N i - k i f i a N a ,
N i = N i / ( 1 + R i r s ) ,
N i = N i ( 1 - R i r s ) .
δ H s / H s = H s - 1 - 1 [ ( R 1 r s ) 2 + ( R 2 r s ) 2 ] 1 / 2 .
δ H s / H s 0.8 R 1 r s .
( S / N ) = [ i = 1 4 ( S / N ) i - 2 ] - 1 / 2 ,

Metrics