Abstract

A simple technique for converting a continuous-wave laser beam into a stable Lorentzian pulse train with a high repetition frequency is demonstrated experimentally. We generated transform-limited pulses of up to 40 GHz, which were composed of higher-order sidebands produced by a Fabry–Perot resonator integrated with an electro-optic phase modulator (EOM). The rf power supplied to the EOM determines the pulse width in the pulse train. This approach enables the pulse width to be continuously tuned from 2.1 to 7.0 ps at the same repetition frequency without any wavelength shift. Furthermore, we experimentally evaluated the stability of the pulse train’s amplitude and obtained stable bit-error-free operation at 9.95 GHz.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Shan, D. Cleland, A. Ellis, “Stabilising Er fibre soliton laser with pulse phase locking,” Electron. Lett. 28, 182–184 (1992).
    [CrossRef]
  2. G. T. Harvey, L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry–Perot stabilizer for soliton transmission,” Opt. Lett. 18, 107–109 (1993).
    [CrossRef] [PubMed]
  3. X. Shan, D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979–981 (1993).
    [CrossRef]
  4. M. Nakazawa, E. Yoshida, Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fibre ring laser,” Electron. Lett. 30, 1603–1605 (1994).
    [CrossRef]
  5. H. Takara, S. Kawanishi, M. Saruwatari, K. Noguchi, “Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er-doped fibre ring lasers with an all-polarization maintaining ring cavity,” Electron. Lett. 28, 2095–2096 (1992).
    [CrossRef]
  6. H. Takara, S. Kawanishi, M. Saruwatari, “Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component,” Electron. Lett. 31, 292–293 (1995).
    [CrossRef]
  7. M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” Quantum Electron. 8, 687–693 (1972).
    [CrossRef]
  8. T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
    [CrossRef]
  9. M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electron. 29, 2693–2701 (1993).
    [CrossRef]
  10. G. M. Macfarlane, A. S. Bell, E. Riis, A. I. Ferguson, “Optical comb generator as an efficient short-pulse source,” Opt. Lett. 21, 534–536 (1996).
    [CrossRef] [PubMed]
  11. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  12. F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  13. M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
    [CrossRef]
  14. M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CPDB4.
  15. M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication Conference (OFC), Vols. 95A and 95B of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper FD 4.
  16. M. Kato, K. Fujiura, T. Kurihara, “Error-free asynchronous bit-by-bit self-signal recognition and demultiplexing from overlapping ultra-fast 640 Gb/s 2-bit signals achieved by the self-frequency shift of a GHz Raman soliton,” in Proceedings of the European Conference on Optical Communication (ECOC) (Associazione Electtrotecnica ed Electronica Itariana, Milano, 2003), postdeadline paper Th4.3.7.

2002 (1)

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

1996 (1)

1995 (1)

H. Takara, S. Kawanishi, M. Saruwatari, “Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component,” Electron. Lett. 31, 292–293 (1995).
[CrossRef]

1994 (1)

M. Nakazawa, E. Yoshida, Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fibre ring laser,” Electron. Lett. 30, 1603–1605 (1994).
[CrossRef]

1993 (3)

G. T. Harvey, L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry–Perot stabilizer for soliton transmission,” Opt. Lett. 18, 107–109 (1993).
[CrossRef] [PubMed]

X. Shan, D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979–981 (1993).
[CrossRef]

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

1992 (2)

X. Shan, D. Cleland, A. Ellis, “Stabilising Er fibre soliton laser with pulse phase locking,” Electron. Lett. 28, 182–184 (1992).
[CrossRef]

H. Takara, S. Kawanishi, M. Saruwatari, K. Noguchi, “Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er-doped fibre ring lasers with an all-polarization maintaining ring cavity,” Electron. Lett. 28, 2095–2096 (1992).
[CrossRef]

1986 (2)

1972 (2)

M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” Quantum Electron. 8, 687–693 (1972).
[CrossRef]

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Becker, M.

M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” Quantum Electron. 8, 687–693 (1972).
[CrossRef]

Bell, A. S.

Cho, Y.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Cleland, D.

X. Shan, D. Cleland, A. Ellis, “Stabilising Er fibre soliton laser with pulse phase locking,” Electron. Lett. 28, 182–184 (1992).
[CrossRef]

Ellis, A.

X. Shan, D. Cleland, A. Ellis, “Stabilising Er fibre soliton laser with pulse phase locking,” Electron. Lett. 28, 182–184 (1992).
[CrossRef]

Ferguson, A. I.

Fujiura, K.

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CPDB4.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication Conference (OFC), Vols. 95A and 95B of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper FD 4.

M. Kato, K. Fujiura, T. Kurihara, “Error-free asynchronous bit-by-bit self-signal recognition and demultiplexing from overlapping ultra-fast 640 Gb/s 2-bit signals achieved by the self-frequency shift of a GHz Raman soliton,” in Proceedings of the European Conference on Optical Communication (ECOC) (Associazione Electtrotecnica ed Electronica Itariana, Milano, 2003), postdeadline paper Th4.3.7.

Gordon, J. P.

Harvey, G. T.

Kato, M.

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CPDB4.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication Conference (OFC), Vols. 95A and 95B of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper FD 4.

M. Kato, K. Fujiura, T. Kurihara, “Error-free asynchronous bit-by-bit self-signal recognition and demultiplexing from overlapping ultra-fast 640 Gb/s 2-bit signals achieved by the self-frequency shift of a GHz Raman soliton,” in Proceedings of the European Conference on Optical Communication (ECOC) (Associazione Electtrotecnica ed Electronica Itariana, Milano, 2003), postdeadline paper Th4.3.7.

Kawanishi, S.

H. Takara, S. Kawanishi, M. Saruwatari, “Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component,” Electron. Lett. 31, 292–293 (1995).
[CrossRef]

H. Takara, S. Kawanishi, M. Saruwatari, K. Noguchi, “Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er-doped fibre ring lasers with an all-polarization maintaining ring cavity,” Electron. Lett. 28, 2095–2096 (1992).
[CrossRef]

Kimura, Y.

M. Nakazawa, E. Yoshida, Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fibre ring laser,” Electron. Lett. 30, 1603–1605 (1994).
[CrossRef]

Kobayashi, T.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Kourogi, M.

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Kuizenga, D.

M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” Quantum Electron. 8, 687–693 (1972).
[CrossRef]

Kurihara, T.

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CPDB4.

M. Kato, K. Fujiura, T. Kurihara, “Error-free asynchronous bit-by-bit self-signal recognition and demultiplexing from overlapping ultra-fast 640 Gb/s 2-bit signals achieved by the self-frequency shift of a GHz Raman soliton,” in Proceedings of the European Conference on Optical Communication (ECOC) (Associazione Electtrotecnica ed Electronica Itariana, Milano, 2003), postdeadline paper Th4.3.7.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication Conference (OFC), Vols. 95A and 95B of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper FD 4.

Kurokawa, K.

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

Macfarlane, G. M.

Matsuo, Y.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Nakagawa, K.

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Nakazawa, M.

M. Nakazawa, E. Yoshida, Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fibre ring laser,” Electron. Lett. 30, 1603–1605 (1994).
[CrossRef]

Noguchi, K.

H. Takara, S. Kawanishi, M. Saruwatari, K. Noguchi, “Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er-doped fibre ring lasers with an all-polarization maintaining ring cavity,” Electron. Lett. 28, 2095–2096 (1992).
[CrossRef]

Ohtsu, M.

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Okamoto, K.

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

Riis, E.

Saruwatari, M.

H. Takara, S. Kawanishi, M. Saruwatari, “Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component,” Electron. Lett. 31, 292–293 (1995).
[CrossRef]

H. Takara, S. Kawanishi, M. Saruwatari, K. Noguchi, “Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er-doped fibre ring lasers with an all-polarization maintaining ring cavity,” Electron. Lett. 28, 2095–2096 (1992).
[CrossRef]

Shan, X.

X. Shan, D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979–981 (1993).
[CrossRef]

X. Shan, D. Cleland, A. Ellis, “Stabilising Er fibre soliton laser with pulse phase locking,” Electron. Lett. 28, 182–184 (1992).
[CrossRef]

Siegman, A.

M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” Quantum Electron. 8, 687–693 (1972).
[CrossRef]

Spirit, D. M.

X. Shan, D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979–981 (1993).
[CrossRef]

Sueta, T.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Takara, H.

H. Takara, S. Kawanishi, M. Saruwatari, “Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component,” Electron. Lett. 31, 292–293 (1995).
[CrossRef]

H. Takara, S. Kawanishi, M. Saruwatari, K. Noguchi, “Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er-doped fibre ring lasers with an all-polarization maintaining ring cavity,” Electron. Lett. 28, 2095–2096 (1992).
[CrossRef]

Yoshida, E.

M. Nakazawa, E. Yoshida, Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fibre ring laser,” Electron. Lett. 30, 1603–1605 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry–Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[CrossRef]

Electron. Lett. (6)

X. Shan, D. Cleland, A. Ellis, “Stabilising Er fibre soliton laser with pulse phase locking,” Electron. Lett. 28, 182–184 (1992).
[CrossRef]

X. Shan, D. M. Spirit, “Novel method to suppress noise in harmonically modelocked erbium fibre lasers,” Electron. Lett. 29, 979–981 (1993).
[CrossRef]

M. Nakazawa, E. Yoshida, Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fibre ring laser,” Electron. Lett. 30, 1603–1605 (1994).
[CrossRef]

H. Takara, S. Kawanishi, M. Saruwatari, K. Noguchi, “Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er-doped fibre ring lasers with an all-polarization maintaining ring cavity,” Electron. Lett. 28, 2095–2096 (1992).
[CrossRef]

H. Takara, S. Kawanishi, M. Saruwatari, “Stabilisation of a modelocked Er-doped fibre laser by suppressing the relaxation oscillation frequency component,” Electron. Lett. 31, 292–293 (1995).
[CrossRef]

M. Kato, K. Kurokawa, K. Fujiura, T. Kurihara, K. Okamoto, “High bit rate and programmable multiwavelength generator based on Raman soliton effect in DSF,” Electron. Lett. 38, 164–166 (2002).
[CrossRef]

Opt. Lett. (4)

Quantum Electron. (2)

M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

M. Becker, D. Kuizenga, A. Siegman, “Harmonic mode locking of the Nd:YAG laser,” Quantum Electron. 8, 687–693 (1972).
[CrossRef]

Other (3)

M. Kato, K. Fujiura, T. Kurihara, “Single-channel 800 Gbit/s asynchronous all-optical amplitude-division demultiplexing based on polarization-independent GHz Raman soliton in fiber,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper CPDB4.

M. Kato, K. Fujiura, T. Kurihara, “New asynchronous OTDM transmission technique realized by optical amplitude-division multi/demultiplexing based on GHz Raman soliton,” in Optical Fiber Communication Conference (OFC), Vols. 95A and 95B of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper FD 4.

M. Kato, K. Fujiura, T. Kurihara, “Error-free asynchronous bit-by-bit self-signal recognition and demultiplexing from overlapping ultra-fast 640 Gb/s 2-bit signals achieved by the self-frequency shift of a GHz Raman soliton,” in Proceedings of the European Conference on Optical Communication (ECOC) (Associazione Electtrotecnica ed Electronica Itariana, Milano, 2003), postdeadline paper Th4.3.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental setup for generation of a 40-GHz transform-limited pulse train: WT - LD, wavelength-tunable single-mode laser diode; PM EDFA, polarization-maintaining erbium-doped fiber amplifier; PM ISOs, polarization-maintaining isolators; RF amp, rf amplifier; EOM, electro-optic phase modulator; M’s, mirrors; TCU, Peltier temperature control unit; DBM, double-balanced mixer; PD, photodetector.

Fig. 2
Fig. 2

Experimental setup for measuring the stability of generated optical pulses: OPG, optical pulse generator; RS fiber, fiber for RS generation; S. A., optical spectrum analyzer; EDFA, erbium-doped fiber amplifier.

Fig. 3
Fig. 3

Experimental setup for BER measurement from frequency-shifted Raman soliton pulses: OPG, optical pulse generator; MOD, modulator; PPG, pulse pattern generator; OR, optical receiver; BER, BER test set; HNL-fiber, highly nonlinear fiber; RS-fiber, fiber for RS generation; AWG, arrayed waveguide grating; EDFAs, erbium-doped fiber amplifiers.

Fig. 4
Fig. 4

Measured optical spectrum of generated pulses with the input cw beam at 1555 nm. Inset, autocorrelation trace of a single pulse.

Fig. 5
Fig. 5

Calculated waveform of the optical pulse generator output.

Fig. 6
Fig. 6

Measured output pulse train.

Fig. 7
Fig. 7

Change in the temporal profiles of the generated pulses in the pulse train: (a) experimentally observed outputs as a function of the rf power input into the rf amplifier, (b) theoretical calculation as a function of the modulation index of the EOM.

Fig. 8
Fig. 8

Relationship between the measured pulse width and the rf power input into the rf amplifier.

Fig. 9
Fig. 9

Wavelength stability of the 3.8-nm wavelength-shifted Raman soliton pulse. Inset, spectrum measured at 1556.9 nm.

Fig. 10
Fig. 10

BER performance of the wavelength-shifted 9.95-Gbit/s Raman soliton pulses. PRBS, pseudorandom bit stream; PD, photodiode.

Fig. 11
Fig. 11

Eye diagrams: (a) 1561 and (b) 1563 nm.

Fig. 12
Fig. 12

Frequency shift response with respect to normalized input power.

Fig. 13
Fig. 13

Linear approximation of the frequency-shift perturbation as a function of the change in input power.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) [ 1 1 + ( 4 f m m F t ) 2 ] E in .
d t = ( 2 - 1 ) 1 / 2 2 f m m F ,
( - i ) u q = 1 2 2 u τ 2 + u 2 u - τ n τ 0 u u 2 τ .
d ν 0 d z [ THz / km ] = - 10 5 λ 2 D 16 π c t c 3 0 d Ω Ω 3 R ( Ω / 2 π t c ) / sinh 2 ( π Ω / 2 ) ,

Metrics