Abstract

In the atmosphere, pointlike sources are surrounded by aureoles because of molecular and aerosol scattering. In various meteorological conditions, this variance field can be a nonnegligible part of the signal detected by a large-field-of-view sensor. A model based on a Monte Carlo technique has been developed to simulate the propagation of radiation coming from a UV point source. The model was validated with an experimental comparison by a photon-counting technique, and good agreement between experimental and theoretical results was found.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Luettgen, J. H. Shapiro, D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8, 1964–1972 (1991).
    [CrossRef]
  2. M. Lindner, S. Elstein, P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” in Image Intensifiers and Applications, C. B. Johnson, T. D. Maclay, F. A. Allahdadi, eds., Proc. SPIE3434, 22–31 (1998).
  3. D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000).
    [CrossRef]
  4. A. S. Zachor, “Aureole radiance field about a source in a scattering–absorbing medium,” Appl. Opt. 17, 1911–1922 (1978).
    [CrossRef] [PubMed]
  5. F. Riewe, A. E. S. Green, “Ultraviolet aureole around a source at a finite distance,” Appl. Opt. 17, 1923–1929 (1978).
    [CrossRef] [PubMed]
  6. R. R. Meier, J. S. Lee, D. E. Anderson, “Atmospheric scattering of middle UV radiation from an internal source,” Appl. Opt. 17, 3216–3225 (1978).
    [CrossRef] [PubMed]
  7. K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
    [CrossRef] [PubMed]
  8. C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth’s atmosphere,” Appl. Opt. 38, 6237–6246 (1999).
    [CrossRef]
  9. C. Lavigne, “Etude théorique et expérimentale de la propagation du rayonnement UV dans la basse atmosphère, Ph.D. dissertation (Université de Rouen, Rouen, France, 2001).
  10. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [CrossRef] [PubMed]
  11. J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998).
    [CrossRef]
  12. J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999).
    [CrossRef]
  13. A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross-section measurement in the UV using a Fourier transform spectrometer,” J. Geophys. Res.99, 25,599–25,605 (1994).
    [CrossRef]
  14. A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
    [CrossRef] [PubMed]
  15. M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
    [CrossRef]
  16. C. Lavigne, P. Chervet, S. Langlois, A. Roblin, “Atmospheric propagation model for calculation of the aureole about a point source,” in Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing, J. D. Gonglewski, ed., Proc. SPIE4167, 43–52 (2001).
    [CrossRef]
  17. C. Lavigne, A. Roblin, S. Langlois, “Solar-blind UV imaging photon detector with automatic gain control,” Meas. Sci. Technol. 13, 713–719 (2002).
    [CrossRef]
  18. B. A. Bodhaine, N. C. Ahlquist, R. C. Schnell, “Three-wavelength nephelometer suitable for aircraft measurements of background aerosol scattering coefficient,” Atmos. Environ. 10, 2268–2276 (1991).
  19. P. Chazette, “The monsoon aerosol extinction properties at Goa during INDOEX as measured with lidar,” J. Geophys. Res., 108, (2003).
    [CrossRef]
  20. P. Chazette, C. Liousse, “A case study of optical and chemical ground apportionment for urban aerosols in Thessaloniki,” Atmos. Environ. 35, 2497–2506 (2001).
    [CrossRef]
  21. A. D. A. Hansen, T. Novakov, “Real time measurements of aerosol black carbon during the carbonaceous species methods comparison study,” Aerosol Sci. Technol. 12, 194–199 (1990).
    [CrossRef]
  22. J. E. Penner, “Carbonaceous aerosols influencing atmospheric radiation: black and organic carbon,” in Report of the Dahlem Workshop on Aerosol Forcing of Climate, R. J. Charlson, J. Heintzenberg, eds. (Wiley, New York, 1995), pp. 91–108.
  23. H. Cachier, M. P. Brémond, P. Buat-Ménard, “Determination of atmospheric soot carbon with a simple thermal method,” Tellus 41B, 379–390 (1989).
    [CrossRef]
  24. M. P. Brémond, H. Cachier, P. Buat-Ménard, “Particulate carbon in the Paris region atmosphere,” Environ. Technol. Lett. 10, 339–346 (1989).
    [CrossRef]
  25. J. Hadji-Lazaro, C. Clerbaux, S. Thiria, “An inversion algorithm using neural networks to retrieve atmospheric CO total columns from high-resolution nadir radiances,” J. Geophys. Res. 104, 23841–23854 (1999).
    [CrossRef]
  26. E. Volz, “Infrared refractive index of the atmospheric aerosol substances,” Appl. Opt. 11, 755–759 (1972).
    [CrossRef] [PubMed]
  27. B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
    [CrossRef]
  28. P. Chervet, C. Lavigne, A. Roblin, P. Bruscaglioni, “Effects of aerosol scattering phase function on point-spread-function calculations,” Appl. Opt. 41, 6489–6498 (2002).
    [CrossRef] [PubMed]

2002

C. Lavigne, A. Roblin, S. Langlois, “Solar-blind UV imaging photon detector with automatic gain control,” Meas. Sci. Technol. 13, 713–719 (2002).
[CrossRef]

P. Chervet, C. Lavigne, A. Roblin, P. Bruscaglioni, “Effects of aerosol scattering phase function on point-spread-function calculations,” Appl. Opt. 41, 6489–6498 (2002).
[CrossRef] [PubMed]

2001

P. Chazette, C. Liousse, “A case study of optical and chemical ground apportionment for urban aerosols in Thessaloniki,” Atmos. Environ. 35, 2497–2506 (2001).
[CrossRef]

2000

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000).
[CrossRef]

1999

C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth’s atmosphere,” Appl. Opt. 38, 6237–6246 (1999).
[CrossRef]

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999).
[CrossRef]

A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
[CrossRef] [PubMed]

J. Hadji-Lazaro, C. Clerbaux, S. Thiria, “An inversion algorithm using neural networks to retrieve atmospheric CO total columns from high-resolution nadir radiances,” J. Geophys. Res. 104, 23841–23854 (1999).
[CrossRef]

1998

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

1995

1991

M. R. Luettgen, J. H. Shapiro, D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8, 1964–1972 (1991).
[CrossRef]

B. A. Bodhaine, N. C. Ahlquist, R. C. Schnell, “Three-wavelength nephelometer suitable for aircraft measurements of background aerosol scattering coefficient,” Atmos. Environ. 10, 2268–2276 (1991).

1990

A. D. A. Hansen, T. Novakov, “Real time measurements of aerosol black carbon during the carbonaceous species methods comparison study,” Aerosol Sci. Technol. 12, 194–199 (1990).
[CrossRef]

K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990).
[CrossRef] [PubMed]

1989

H. Cachier, M. P. Brémond, P. Buat-Ménard, “Determination of atmospheric soot carbon with a simple thermal method,” Tellus 41B, 379–390 (1989).
[CrossRef]

M. P. Brémond, H. Cachier, P. Buat-Ménard, “Particulate carbon in the Paris region atmosphere,” Environ. Technol. Lett. 10, 339–346 (1989).
[CrossRef]

1978

1972

Ahlquist, N. C.

B. A. Bodhaine, N. C. Ahlquist, R. C. Schnell, “Three-wavelength nephelometer suitable for aircraft measurements of background aerosol scattering coefficient,” Atmos. Environ. 10, 2268–2276 (1991).

Anderson, D. E.

Bodhaine, B. A.

B. A. Bodhaine, N. C. Ahlquist, R. C. Schnell, “Three-wavelength nephelometer suitable for aircraft measurements of background aerosol scattering coefficient,” Atmos. Environ. 10, 2268–2276 (1991).

Brémond, M. P.

H. Cachier, M. P. Brémond, P. Buat-Ménard, “Determination of atmospheric soot carbon with a simple thermal method,” Tellus 41B, 379–390 (1989).
[CrossRef]

M. P. Brémond, H. Cachier, P. Buat-Ménard, “Particulate carbon in the Paris region atmosphere,” Environ. Technol. Lett. 10, 339–346 (1989).
[CrossRef]

Bruscaglioni, P.

Buat-Ménard, P.

M. P. Brémond, H. Cachier, P. Buat-Ménard, “Particulate carbon in the Paris region atmosphere,” Environ. Technol. Lett. 10, 339–346 (1989).
[CrossRef]

H. Cachier, M. P. Brémond, P. Buat-Ménard, “Determination of atmospheric soot carbon with a simple thermal method,” Tellus 41B, 379–390 (1989).
[CrossRef]

Bucholtz, A.

Buis, J. P.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Burrows, J. P.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Cachier, H.

H. Cachier, M. P. Brémond, P. Buat-Ménard, “Determination of atmospheric soot carbon with a simple thermal method,” Tellus 41B, 379–390 (1989).
[CrossRef]

M. P. Brémond, H. Cachier, P. Buat-Ménard, “Particulate carbon in the Paris region atmosphere,” Environ. Technol. Lett. 10, 339–346 (1989).
[CrossRef]

Carleer, M.

A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
[CrossRef] [PubMed]

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross-section measurement in the UV using a Fourier transform spectrometer,” J. Geophys. Res.99, 25,599–25,605 (1994).
[CrossRef]

Chazette, P.

P. Chazette, C. Liousse, “A case study of optical and chemical ground apportionment for urban aerosols in Thessaloniki,” Atmos. Environ. 35, 2497–2506 (2001).
[CrossRef]

P. Chazette, “The monsoon aerosol extinction properties at Goa during INDOEX as measured with lidar,” J. Geophys. Res., 108, (2003).
[CrossRef]

Chervet, P.

P. Chervet, C. Lavigne, A. Roblin, P. Bruscaglioni, “Effects of aerosol scattering phase function on point-spread-function calculations,” Appl. Opt. 41, 6489–6498 (2002).
[CrossRef] [PubMed]

C. Lavigne, P. Chervet, S. Langlois, A. Roblin, “Atmospheric propagation model for calculation of the aureole about a point source,” in Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing, J. D. Gonglewski, ed., Proc. SPIE4167, 43–52 (2001).
[CrossRef]

Clerbaux, C.

J. Hadji-Lazaro, C. Clerbaux, S. Thiria, “An inversion algorithm using neural networks to retrieve atmospheric CO total columns from high-resolution nadir radiances,” J. Geophys. Res. 104, 23841–23854 (1999).
[CrossRef]

Colin, R.

A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
[CrossRef] [PubMed]

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross-section measurement in the UV using a Fourier transform spectrometer,” J. Geophys. Res.99, 25,599–25,605 (1994).
[CrossRef]

Coquart, B.

A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
[CrossRef] [PubMed]

Dehn, A.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Deters, B.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Eck, T. F.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Elstein, S.

M. Lindner, S. Elstein, P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” in Image Intensifiers and Applications, C. B. Johnson, T. D. Maclay, F. A. Allahdadi, eds., Proc. SPIE3434, 22–31 (1998).

Fally, S.

A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
[CrossRef] [PubMed]

Girasole, T.

Green, A. E. S.

Guilmot, J. M.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross-section measurement in the UV using a Fourier transform spectrometer,” J. Geophys. Res.99, 25,599–25,605 (1994).
[CrossRef]

Hadji-Lazaro, J.

J. Hadji-Lazaro, C. Clerbaux, S. Thiria, “An inversion algorithm using neural networks to retrieve atmospheric CO total columns from high-resolution nadir radiances,” J. Geophys. Res. 104, 23841–23854 (1999).
[CrossRef]

Hansen, A. D. A.

A. D. A. Hansen, T. Novakov, “Real time measurements of aerosol black carbon during the carbonaceous species methods comparison study,” Aerosol Sci. Technol. 12, 194–199 (1990).
[CrossRef]

Hermans, C.

A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
[CrossRef] [PubMed]

Hess, M.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

Heymsfield, A.

Himmelmann, S.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Holben, B. N.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Jankowiak, I.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Jenouvrier, A.

A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
[CrossRef] [PubMed]

Kaufman, Y. J.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Koepke, P.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

Kreiss, W.

Kumar, V.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000).
[CrossRef]

Kung, P.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000).
[CrossRef]

Langlois, S.

C. Lavigne, A. Roblin, S. Langlois, “Solar-blind UV imaging photon detector with automatic gain control,” Meas. Sci. Technol. 13, 713–719 (2002).
[CrossRef]

C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth’s atmosphere,” Appl. Opt. 38, 6237–6246 (1999).
[CrossRef]

C. Lavigne, P. Chervet, S. Langlois, A. Roblin, “Atmospheric propagation model for calculation of the aureole about a point source,” in Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing, J. D. Gonglewski, ed., Proc. SPIE4167, 43–52 (2001).
[CrossRef]

Lavenu, F.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Lavigne, C.

P. Chervet, C. Lavigne, A. Roblin, P. Bruscaglioni, “Effects of aerosol scattering phase function on point-spread-function calculations,” Appl. Opt. 41, 6489–6498 (2002).
[CrossRef] [PubMed]

C. Lavigne, A. Roblin, S. Langlois, “Solar-blind UV imaging photon detector with automatic gain control,” Meas. Sci. Technol. 13, 713–719 (2002).
[CrossRef]

C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth’s atmosphere,” Appl. Opt. 38, 6237–6246 (1999).
[CrossRef]

C. Lavigne, “Etude théorique et expérimentale de la propagation du rayonnement UV dans la basse atmosphère, Ph.D. dissertation (Université de Rouen, Rouen, France, 2001).

C. Lavigne, P. Chervet, S. Langlois, A. Roblin, “Atmospheric propagation model for calculation of the aureole about a point source,” in Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing, J. D. Gonglewski, ed., Proc. SPIE4167, 43–52 (2001).
[CrossRef]

Lee, J. S.

Lindner, M.

M. Lindner, S. Elstein, P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” in Image Intensifiers and Applications, C. B. Johnson, T. D. Maclay, F. A. Allahdadi, eds., Proc. SPIE3434, 22–31 (1998).

Lindner, P.

M. Lindner, S. Elstein, P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” in Image Intensifiers and Applications, C. B. Johnson, T. D. Maclay, F. A. Allahdadi, eds., Proc. SPIE3434, 22–31 (1998).

Liou, K. N.

Liousse, C.

P. Chazette, C. Liousse, “A case study of optical and chemical ground apportionment for urban aerosols in Thessaloniki,” Atmos. Environ. 35, 2497–2506 (2001).
[CrossRef]

Luettgen, M. R.

Meier, R. R.

Mérienne, M. F.

A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
[CrossRef] [PubMed]

Mi, K.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000).
[CrossRef]

Nakajima, T.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Novakov, T.

A. D. A. Hansen, T. Novakov, “Real time measurements of aerosol black carbon during the carbonaceous species methods comparison study,” Aerosol Sci. Technol. 12, 194–199 (1990).
[CrossRef]

Orphal, J.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Ou, S. C.

Outters, V.

Penner, J. E.

J. E. Penner, “Carbonaceous aerosols influencing atmospheric radiation: black and organic carbon,” in Report of the Dahlem Workshop on Aerosol Forcing of Climate, R. J. Charlson, J. Heintzenberg, eds. (Wiley, New York, 1995), pp. 91–108.

Razeghi, M.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000).
[CrossRef]

Reagan, J. A.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Reilly, D. M.

Richter, A.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Riewe, F.

Roblin, A.

C. Lavigne, A. Roblin, S. Langlois, “Solar-blind UV imaging photon detector with automatic gain control,” Meas. Sci. Technol. 13, 713–719 (2002).
[CrossRef]

P. Chervet, C. Lavigne, A. Roblin, P. Bruscaglioni, “Effects of aerosol scattering phase function on point-spread-function calculations,” Appl. Opt. 41, 6489–6498 (2002).
[CrossRef] [PubMed]

C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth’s atmosphere,” Appl. Opt. 38, 6237–6246 (1999).
[CrossRef]

C. Lavigne, P. Chervet, S. Langlois, A. Roblin, “Atmospheric propagation model for calculation of the aureole about a point source,” in Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing, J. D. Gonglewski, ed., Proc. SPIE4167, 43–52 (2001).
[CrossRef]

Rozé, C.

Sandvik, P.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000).
[CrossRef]

Schnell, R. C.

B. A. Bodhaine, N. C. Ahlquist, R. C. Schnell, “Three-wavelength nephelometer suitable for aircraft measurements of background aerosol scattering coefficient,” Atmos. Environ. 10, 2268–2276 (1991).

Schult, I.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

Setzer, A.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Shapiro, J. H.

Simon, P. C.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross-section measurement in the UV using a Fourier transform spectrometer,” J. Geophys. Res.99, 25,599–25,605 (1994).
[CrossRef]

Sluster, I.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Smirnov, Z.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Takano, Y.

Tanré, D.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Thiria, S.

J. Hadji-Lazaro, C. Clerbaux, S. Thiria, “An inversion algorithm using neural networks to retrieve atmospheric CO total columns from high-resolution nadir radiances,” J. Geophys. Res. 104, 23841–23854 (1999).
[CrossRef]

Vandaele, A. C.

A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
[CrossRef] [PubMed]

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross-section measurement in the UV using a Fourier transform spectrometer,” J. Geophys. Res.99, 25,599–25,605 (1994).
[CrossRef]

Vermote, E.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Voigt, S.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

Volz, E.

Walker, D.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000).
[CrossRef]

Zachor, A. S.

Zhang, X. H.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000).
[CrossRef]

Aerosol Sci. Technol.

A. D. A. Hansen, T. Novakov, “Real time measurements of aerosol black carbon during the carbonaceous species methods comparison study,” Aerosol Sci. Technol. 12, 194–199 (1990).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000).
[CrossRef]

Atmos. Environ.

B. A. Bodhaine, N. C. Ahlquist, R. C. Schnell, “Three-wavelength nephelometer suitable for aircraft measurements of background aerosol scattering coefficient,” Atmos. Environ. 10, 2268–2276 (1991).

P. Chazette, C. Liousse, “A case study of optical and chemical ground apportionment for urban aerosols in Thessaloniki,” Atmos. Environ. 35, 2497–2506 (2001).
[CrossRef]

Bull. Am. Meteorol. Soc.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

Environ. Technol. Lett.

M. P. Brémond, H. Cachier, P. Buat-Ménard, “Particulate carbon in the Paris region atmosphere,” Environ. Technol. Lett. 10, 339–346 (1989).
[CrossRef]

J. Geophys. Res.

J. Hadji-Lazaro, C. Clerbaux, S. Thiria, “An inversion algorithm using neural networks to retrieve atmospheric CO total columns from high-resolution nadir radiances,” J. Geophys. Res. 104, 23841–23854 (1999).
[CrossRef]

J. Mol. Spectrosc.

A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transfer

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998).
[CrossRef]

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999).
[CrossRef]

Meas. Sci. Technol.

C. Lavigne, A. Roblin, S. Langlois, “Solar-blind UV imaging photon detector with automatic gain control,” Meas. Sci. Technol. 13, 713–719 (2002).
[CrossRef]

Remote Sens. Environ.

B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Tellus

H. Cachier, M. P. Brémond, P. Buat-Ménard, “Determination of atmospheric soot carbon with a simple thermal method,” Tellus 41B, 379–390 (1989).
[CrossRef]

Other

J. E. Penner, “Carbonaceous aerosols influencing atmospheric radiation: black and organic carbon,” in Report of the Dahlem Workshop on Aerosol Forcing of Climate, R. J. Charlson, J. Heintzenberg, eds. (Wiley, New York, 1995), pp. 91–108.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross-section measurement in the UV using a Fourier transform spectrometer,” J. Geophys. Res.99, 25,599–25,605 (1994).
[CrossRef]

C. Lavigne, “Etude théorique et expérimentale de la propagation du rayonnement UV dans la basse atmosphère, Ph.D. dissertation (Université de Rouen, Rouen, France, 2001).

M. Lindner, S. Elstein, P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” in Image Intensifiers and Applications, C. B. Johnson, T. D. Maclay, F. A. Allahdadi, eds., Proc. SPIE3434, 22–31 (1998).

C. Lavigne, P. Chervet, S. Langlois, A. Roblin, “Atmospheric propagation model for calculation of the aureole about a point source,” in Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing, J. D. Gonglewski, ed., Proc. SPIE4167, 43–52 (2001).
[CrossRef]

P. Chazette, “The monsoon aerosol extinction properties at Goa during INDOEX as measured with lidar,” J. Geophys. Res., 108, (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Elementary detector arrangement for Monte Carlo calculations in a one-dimensional atmosphere. C is the location of the laser collision, and xk is the direction of the photon’s path before the collision.

Fig. 2
Fig. 2

Definition of the detection direction geometry; (γ, ϕ) is the direction of photon arrival in spherical coordinates.

Fig. 3
Fig. 3

Discrete lines of sight for horizontal and vertical scanning and surfaces used to estimate the flux density onto a receiver versus pointing direction.

Fig. 4
Fig. 4

Comparison of FOV transmittance calculated for four scattering phase functions and two source–sensor distances. The corresponding phase functions are plotted in Fig. 5.

Fig. 5
Fig. 5

(a) Comparison of three aerosol phase functions from the OPAC database: urban (g = 0.629), maritime (g = 0.689), fog (g = 0.869), and modified Henyey–Greenstein as defined by Eq. (27) of Ref. 4 with g = 0.72 and f = 0.5. (b) Details of the forward peaks.

Fig. 6
Fig. 6

Polar plot of the UV source’s angular intensity recorded at a small distance from the detector and best fit with Eq. (11) and α = 3000; (a) linear scale, (b) logarithmic scale.

Fig. 7
Fig. 7

Time evolution of (a) pressure and temperature and (b) relative humidity during the experimental period of 21–28 March 2001.

Fig. 8
Fig. 8

Time evolution of ozone concentration for the 5 days during which the scattering experiments were performed.

Fig. 9
Fig. 9

Average aerosol granulometry measured during period 3.

Fig. 10
Fig. 10

Time evolution of the aerosol scattering coefficient at 300 and 240 nm. N is the total number density of particles; rm is the modal radius.

Fig. 11
Fig. 11

Photon flux density evaluated for a source–sensor distance equal to d = 500 m for horizontal scanning and vertical scanning. When the measurements were performed on 26 March the absorbing atmosphere was low and the optical depth at 270 nm was 0.42.

Fig. 12
Fig. 12

Comparison of Monte Carlo and experimental photon flux densities for five horizontal scannings for source–sensor distances d of 300, 500, 750, 950, and 1057 m.

Fig. 13
Fig. 13

(a) Comparison of theoretical and experimental photon flux densities for vertical scanning performed on 23 March at a distance of 745 m. (b) Comparison of theoretical results for horizontal and vertical scanning carried out in the same atmospheric conditions and for the same source–sensor distance of 745 m.

Tables (4)

Tables Icon

Table 1 Description of Equipment at the Mobile Aerosol Station Used to Determine Aerosol Properties

Tables Icon

Table 2 Characteristic Parameters of the Three Log-Normal Size Distributionsa

Tables Icon

Table 3 Average Atmospheric Parameters Determined during Scattering Measurementsa

Tables Icon

Table 4 Evaluation of Uncertainties in Photon Flux Density Calculated with the Monte Carlo Code when the Source Intensity’s Angular Dependence is Perfectly Knowna

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I S ( u ^ 0 · e ^ z ) = I ¯ s S ( cos θ 0 ) = I ¯ S S ( μ 0 ) ,
0 1 S ( μ ) d μ = 2 .
- ln     r 1 = 0 l k sca ( l ) d l ,
i = n init n fin - 1 τ i sca < - ln r 1 i = n init n fin τ i sca ,
H j k = P ( cos θ sca ) i exp ( - 0 d i j k k ext ( l ) d l ) δ S cos γ ( i d i j k ) 2 ,
T ( τ ,     Θ ) = exp ( - τ ) + j = 1 N tot l k = 1 n col j W j k F ( γ l ;     Θ ) ( N tot / 4 π ) φ 0 φ 0 + δ φ 0 θ 0 θ 0 + δ θ 0 S ( cos θ ) sin θ d θ d φ ,
T ( τ ,     Θ ) = exp ( - τ ) + d 2 I ¯ S S ( cos θ 0 ) × 0 2 π 0 Θ / 2 B ( τ ,     γ ,     φ ) cos     γ sin γ × d γ d φ ,
N ( τ ,     γ ,     φ ) = d 2 sin γ I ¯ S B ( τ ,     γ ,     φ ) .
Φ ( τ ,     γ ) = 1 N pix p = 1 N pix Φ p ( τ ,     γ p ,     φ p ) ,
Φ p th ( τ ,     γ p ,     φ p ) = N p ( τ ,     γ p ,     φ p ) × Φ ref S ( θ 0 = 0 ) ( d ref d ) 2 δ Ω p cos γ p sin γ p ,
I ( cos θ 0 ) = I S ¯ × 2 1 + α S / ( α S - 1 ) 1 / 2 arcsin [ ( α S - 1 ) / α S ] 1 / 2 × ( cos 2 θ 0 + α S sin 2 θ 0 ) 1 / 2             α S > 1 ,

Metrics