Abstract

A remote-sensing reflectance model based on a lookup table is proposed for use in analyzing satellite ocean color data in both case 1 and case 2 waters. The model coefficients are tabulated for grid values of three angles—solar zenith, sensor zenith, and relative azimuth—to take account of directional variation. This model also requires, as input, a phase function parameter defined by the contribution of suspended particles to the backscattering coefficient. The model is generated from radiative transfer simulations for a wide range of inherent optical properties that cover both case 1 and 2 waters. The model uncertainty that is due to phase function variability is significantly reduced from that in conventional models. Bidirectional variation of reflectance is described and explained for a variety of cases. The effects of wind speed and cloud cover on bidirectional variation are also considered, including those for the fully overcast case in which angular variation can still be considerable (~10%). The implications for seaborne validation of satellite-derived water-leaving reflectance are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription