Abstract

Dipicolinic acid (DPA) and the Ca2+ complex of DPA (CaDPA) are major chemical components of bacterial spores. With fluorescence being considered for the detection and identification of spores, it is important to understand the optical properties of the major components of the spores. We report in some detail on the room-temperature fluorescence excitation and emission spectra of DPA and its calcium ion complex and provide a comparison of the excitation–emission spectrum in a dry, wet paste and aqueous form. DPA solutions have weak, if any, fluorescence, with increased fluorescence when the DPA is dry. After exposure to a broad source UV light of the DPA, wet or dry, we observe a large increase in fluorescence with a maximum intensity emission peak at around 440 nm for excitation light with a wavelength of around 360 nm. There is a slight blueshift in the absorption spectra of UV-exposed DPA from the unexposed DPA solution. CaDPA in solution shows a slight fluorescence with increased fluorescence in the dry form, and a substantial increase of fluorescence was observed after UV exposure with an emission peak of around 410 nm for excitation around 305 nm. The detailed excitation–emission spectra are necessary for better interpretation of the fluorescence spectra of bacterial spores where DPA is a major chemical component.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Murrell, “The biochemistry of the bacterial endospore,” Adv. Microbiol. Physiol. 1, 133–251 (1967).
    [CrossRef]
  2. W. G. Murrell, “Chemical composition of spores and spore structures,” in The Bacterial Spores, G. W. Gould, A. Hurst, eds. (Academic, London, 1969), pp. 215–273.
  3. J. F. Powell, “Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium,” Biochem. J. 54, 210–211 (1953).
    [PubMed]
  4. B. D. Church, H. Halvorson, “Dependence of the heat resistance of the bacterial endospores on their dipicolinic acid content,” Nature (London) 183, 124–125 (1959).
    [CrossRef]
  5. G. W. Gould, “Germination,” in The Bacterial Spore, G. W. Gould, A. Hurst, eds. (Academic, New York, 1969), pp. 397–444.
  6. R. S. Hanson, M. V. Curry, J. V. Garner, H. O. Halvorson, “Mutants of Bacillus cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium,” Can. J. Microbiol. 18, 1139–1143 (1972).
    [CrossRef] [PubMed]
  7. M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Good-heart, Fundamentals of Microbiology, 9th ed. (Saunders, Philadelphia, Pa., 1974).
  8. G. W. Gould, G. J. Dring, “Mechanisms of spore heat resistance,” Adv. Microbiol. Physiol. 11, 137–164 (1974).
    [CrossRef]
  9. G. W. Gould, G. J. Dring, “Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex,” Nature (London) 258, 402–405 (1975).
    [CrossRef]
  10. G. Balassa, P. Milhaud, E. Raulet, M. T. Silva, J. C. Sousa, “A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores,” J. Gen. Microbiol. 110, 365–379 (1979).
    [CrossRef] [PubMed]
  11. P. E. Berg, N. Grecz, “Relationship of dipicolinic acid content in spores of Bacillus cereus T to ultraviolet and gamma radiation resistance,” J. Bacteriol. 103, 517–519 (1970).
    [PubMed]
  12. G. R. Germaine, W. G. Murrell, “Effect of dipicolinic acid on the ultraviolet radiation resistance of Bacillus cereus spores,” Photochem. Photobiol. 17, 145–154 (1973).
    [CrossRef] [PubMed]
  13. A. Alimova, A. Katz, H. W. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, R. R. Alfano, “Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation,” Appl. Opt. 42, 4080–4087 (2003).
    [CrossRef] [PubMed]
  14. G. J. Dring, G. W. Gould, “Sequence of events during rapid germination of Bacillus cereus,” J. Gen. Microbiol. 65, 101–104 (1971).
    [CrossRef] [PubMed]
  15. D. L. Perkins, C. R. Lovel, B. V. Bronk, B. Setlow, P. Setlow, M. L. Myrick, “The contribution of dipicolinic acid and calcium dipicolinate in the mid-infrared absorbance of Bacillus subtilis studied by FT-IR reflectance microspectroscopy,” Microspectroscopy (to be published).
  16. G. F. Bailey, S. Karp, L. E. Sacks, “Ultraviolet-absorption spectra of dry bacterial spores,” J. Bacteriol. 89, 984–987 (1965).
    [PubMed]
  17. J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
    [CrossRef] [PubMed]
  18. H. Shibata, S. Yamashita, M. Ohe, I. Tani, “Laser Raman spectroscopy of lyophilized bacterial spores,” Microbiol. Immunol. 30, 307–313 (1986).
    [CrossRef] [PubMed]
  19. R. Nudelman, B. V. Bronk, S. Efrima, “Fluorescence emission derived from dipicolinic acid, its sodium, and its calcium salts,” Appl. Spectrosc. 54, 445–449 (2000).
    [CrossRef]
  20. B. V. Bronk, A. Shoaibi, R. Nudelman, A. Akinyemi, “Physical perturbation for fluorescent characterization of microorganism particles,” in Chemical and Biological Sensing, P. J. Gardner, ed., Proc. SPIE4036, 169–180 (2000).
    [CrossRef]
  21. R. Nudelman, N. Feay, M. Hirsch, S. Efrima, B. Bronk, “Fluorescence of dipicolinic acid as a possible component of the observed UV emission spectra of bacterial spores,” in Air Monitoring and Detection of Chemical and Biological Agents, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3533, 190–195 (1998).
    [CrossRef]
  22. G. W. Faris, R. A. Copeland, K. Mortelmans, B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36, 958–967 (1997).
    [CrossRef] [PubMed]
  23. A. D. Warth, “Determination of dipicolinic acid in bacterial spores by derivative spectroscopy,” Anal. Biochem. 130, 502–505 (1983).
    [CrossRef] [PubMed]
  24. G. Strahs, R. E. Dickerson, “The crystal structure of calcium dipicolinate trihydrate (a bacterial spore metabolite),” Acta Crystallogr. Sect. B 24, 571–578 (1968).
    [CrossRef]
  25. E. Ghiamati, R. Manoharan, W. H. Nelson, J. F. Sperry, “UV resonance Raman spectra of bacillus spores,” Appl. Spectrosc. 46, 357–364 (1992).
    [CrossRef]
  26. J. Kunnil, B. Swartz, L. Reinisch, “Changes in the luminescence between dried and wet bacillus spores,” Appl. Opt. 43, 5404–5409 (2004).
    [CrossRef] [PubMed]

2004 (1)

2003 (1)

2000 (1)

1997 (1)

1992 (1)

1986 (1)

H. Shibata, S. Yamashita, M. Ohe, I. Tani, “Laser Raman spectroscopy of lyophilized bacterial spores,” Microbiol. Immunol. 30, 307–313 (1986).
[CrossRef] [PubMed]

1983 (1)

A. D. Warth, “Determination of dipicolinic acid in bacterial spores by derivative spectroscopy,” Anal. Biochem. 130, 502–505 (1983).
[CrossRef] [PubMed]

1979 (1)

G. Balassa, P. Milhaud, E. Raulet, M. T. Silva, J. C. Sousa, “A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores,” J. Gen. Microbiol. 110, 365–379 (1979).
[CrossRef] [PubMed]

1975 (1)

G. W. Gould, G. J. Dring, “Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex,” Nature (London) 258, 402–405 (1975).
[CrossRef]

1974 (1)

G. W. Gould, G. J. Dring, “Mechanisms of spore heat resistance,” Adv. Microbiol. Physiol. 11, 137–164 (1974).
[CrossRef]

1973 (1)

G. R. Germaine, W. G. Murrell, “Effect of dipicolinic acid on the ultraviolet radiation resistance of Bacillus cereus spores,” Photochem. Photobiol. 17, 145–154 (1973).
[CrossRef] [PubMed]

1972 (1)

R. S. Hanson, M. V. Curry, J. V. Garner, H. O. Halvorson, “Mutants of Bacillus cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium,” Can. J. Microbiol. 18, 1139–1143 (1972).
[CrossRef] [PubMed]

1971 (1)

G. J. Dring, G. W. Gould, “Sequence of events during rapid germination of Bacillus cereus,” J. Gen. Microbiol. 65, 101–104 (1971).
[CrossRef] [PubMed]

1970 (1)

P. E. Berg, N. Grecz, “Relationship of dipicolinic acid content in spores of Bacillus cereus T to ultraviolet and gamma radiation resistance,” J. Bacteriol. 103, 517–519 (1970).
[PubMed]

1968 (1)

G. Strahs, R. E. Dickerson, “The crystal structure of calcium dipicolinate trihydrate (a bacterial spore metabolite),” Acta Crystallogr. Sect. B 24, 571–578 (1968).
[CrossRef]

1967 (2)

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
[CrossRef] [PubMed]

W. G. Murrell, “The biochemistry of the bacterial endospore,” Adv. Microbiol. Physiol. 1, 133–251 (1967).
[CrossRef]

1965 (1)

G. F. Bailey, S. Karp, L. E. Sacks, “Ultraviolet-absorption spectra of dry bacterial spores,” J. Bacteriol. 89, 984–987 (1965).
[PubMed]

1959 (1)

B. D. Church, H. Halvorson, “Dependence of the heat resistance of the bacterial endospores on their dipicolinic acid content,” Nature (London) 183, 124–125 (1959).
[CrossRef]

1953 (1)

J. F. Powell, “Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium,” Biochem. J. 54, 210–211 (1953).
[PubMed]

Akinyemi, A.

B. V. Bronk, A. Shoaibi, R. Nudelman, A. Akinyemi, “Physical perturbation for fluorescent characterization of microorganism particles,” in Chemical and Biological Sensing, P. J. Gardner, ed., Proc. SPIE4036, 169–180 (2000).
[CrossRef]

Alfano, R. R.

Alimova, A.

Bailey, G. F.

G. F. Bailey, S. Karp, L. E. Sacks, “Ultraviolet-absorption spectra of dry bacterial spores,” J. Bacteriol. 89, 984–987 (1965).
[PubMed]

Balassa, G.

G. Balassa, P. Milhaud, E. Raulet, M. T. Silva, J. C. Sousa, “A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores,” J. Gen. Microbiol. 110, 365–379 (1979).
[CrossRef] [PubMed]

Berg, P. E.

P. E. Berg, N. Grecz, “Relationship of dipicolinic acid content in spores of Bacillus cereus T to ultraviolet and gamma radiation resistance,” J. Bacteriol. 103, 517–519 (1970).
[PubMed]

Bronk, B.

R. Nudelman, N. Feay, M. Hirsch, S. Efrima, B. Bronk, “Fluorescence of dipicolinic acid as a possible component of the observed UV emission spectra of bacterial spores,” in Air Monitoring and Detection of Chemical and Biological Agents, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3533, 190–195 (1998).
[CrossRef]

Bronk, B. V.

R. Nudelman, B. V. Bronk, S. Efrima, “Fluorescence emission derived from dipicolinic acid, its sodium, and its calcium salts,” Appl. Spectrosc. 54, 445–449 (2000).
[CrossRef]

G. W. Faris, R. A. Copeland, K. Mortelmans, B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36, 958–967 (1997).
[CrossRef] [PubMed]

B. V. Bronk, A. Shoaibi, R. Nudelman, A. Akinyemi, “Physical perturbation for fluorescent characterization of microorganism particles,” in Chemical and Biological Sensing, P. J. Gardner, ed., Proc. SPIE4036, 169–180 (2000).
[CrossRef]

D. L. Perkins, C. R. Lovel, B. V. Bronk, B. Setlow, P. Setlow, M. L. Myrick, “The contribution of dipicolinic acid and calcium dipicolinate in the mid-infrared absorbance of Bacillus subtilis studied by FT-IR reflectance microspectroscopy,” Microspectroscopy (to be published).

Church, B. D.

B. D. Church, H. Halvorson, “Dependence of the heat resistance of the bacterial endospores on their dipicolinic acid content,” Nature (London) 183, 124–125 (1959).
[CrossRef]

Copeland, R. A.

Crabtree, K. T.

M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Good-heart, Fundamentals of Microbiology, 9th ed. (Saunders, Philadelphia, Pa., 1974).

Curry, M. V.

R. S. Hanson, M. V. Curry, J. V. Garner, H. O. Halvorson, “Mutants of Bacillus cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium,” Can. J. Microbiol. 18, 1139–1143 (1972).
[CrossRef] [PubMed]

Dickerson, R. E.

G. Strahs, R. E. Dickerson, “The crystal structure of calcium dipicolinate trihydrate (a bacterial spore metabolite),” Acta Crystallogr. Sect. B 24, 571–578 (1968).
[CrossRef]

Dring, G. J.

G. W. Gould, G. J. Dring, “Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex,” Nature (London) 258, 402–405 (1975).
[CrossRef]

G. W. Gould, G. J. Dring, “Mechanisms of spore heat resistance,” Adv. Microbiol. Physiol. 11, 137–164 (1974).
[CrossRef]

G. J. Dring, G. W. Gould, “Sequence of events during rapid germination of Bacillus cereus,” J. Gen. Microbiol. 65, 101–104 (1971).
[CrossRef] [PubMed]

Efrima, S.

R. Nudelman, B. V. Bronk, S. Efrima, “Fluorescence emission derived from dipicolinic acid, its sodium, and its calcium salts,” Appl. Spectrosc. 54, 445–449 (2000).
[CrossRef]

R. Nudelman, N. Feay, M. Hirsch, S. Efrima, B. Bronk, “Fluorescence of dipicolinic acid as a possible component of the observed UV emission spectra of bacterial spores,” in Air Monitoring and Detection of Chemical and Biological Agents, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3533, 190–195 (1998).
[CrossRef]

Faris, G. W.

Feay, N.

R. Nudelman, N. Feay, M. Hirsch, S. Efrima, B. Bronk, “Fluorescence of dipicolinic acid as a possible component of the observed UV emission spectra of bacterial spores,” in Air Monitoring and Detection of Chemical and Biological Agents, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3533, 190–195 (1998).
[CrossRef]

Frobisher, M.

M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Good-heart, Fundamentals of Microbiology, 9th ed. (Saunders, Philadelphia, Pa., 1974).

Garner, J. V.

R. S. Hanson, M. V. Curry, J. V. Garner, H. O. Halvorson, “Mutants of Bacillus cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium,” Can. J. Microbiol. 18, 1139–1143 (1972).
[CrossRef] [PubMed]

Germaine, G. R.

G. R. Germaine, W. G. Murrell, “Effect of dipicolinic acid on the ultraviolet radiation resistance of Bacillus cereus spores,” Photochem. Photobiol. 17, 145–154 (1973).
[CrossRef] [PubMed]

Ghiamati, E.

Good-heart, C. R.

M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Good-heart, Fundamentals of Microbiology, 9th ed. (Saunders, Philadelphia, Pa., 1974).

Gould, G. W.

G. W. Gould, G. J. Dring, “Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex,” Nature (London) 258, 402–405 (1975).
[CrossRef]

G. W. Gould, G. J. Dring, “Mechanisms of spore heat resistance,” Adv. Microbiol. Physiol. 11, 137–164 (1974).
[CrossRef]

G. J. Dring, G. W. Gould, “Sequence of events during rapid germination of Bacillus cereus,” J. Gen. Microbiol. 65, 101–104 (1971).
[CrossRef] [PubMed]

G. W. Gould, “Germination,” in The Bacterial Spore, G. W. Gould, A. Hurst, eds. (Academic, New York, 1969), pp. 397–444.

Grecz, N.

P. E. Berg, N. Grecz, “Relationship of dipicolinic acid content in spores of Bacillus cereus T to ultraviolet and gamma radiation resistance,” J. Bacteriol. 103, 517–519 (1970).
[PubMed]

Halvorson, H.

B. D. Church, H. Halvorson, “Dependence of the heat resistance of the bacterial endospores on their dipicolinic acid content,” Nature (London) 183, 124–125 (1959).
[CrossRef]

Halvorson, H. O.

R. S. Hanson, M. V. Curry, J. V. Garner, H. O. Halvorson, “Mutants of Bacillus cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium,” Can. J. Microbiol. 18, 1139–1143 (1972).
[CrossRef] [PubMed]

Hanson, R. S.

R. S. Hanson, M. V. Curry, J. V. Garner, H. O. Halvorson, “Mutants of Bacillus cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium,” Can. J. Microbiol. 18, 1139–1143 (1972).
[CrossRef] [PubMed]

Hinsdill, R. D.

M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Good-heart, Fundamentals of Microbiology, 9th ed. (Saunders, Philadelphia, Pa., 1974).

Hirsch, M.

R. Nudelman, N. Feay, M. Hirsch, S. Efrima, B. Bronk, “Fluorescence of dipicolinic acid as a possible component of the observed UV emission spectra of bacterial spores,” in Air Monitoring and Detection of Chemical and Biological Agents, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3533, 190–195 (1998).
[CrossRef]

Karp, S.

G. F. Bailey, S. Karp, L. E. Sacks, “Ultraviolet-absorption spectra of dry bacterial spores,” J. Bacteriol. 89, 984–987 (1965).
[PubMed]

Katz, A.

Kunnil, J.

Lewis, J. C.

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
[CrossRef] [PubMed]

Lovel, C. R.

D. L. Perkins, C. R. Lovel, B. V. Bronk, B. Setlow, P. Setlow, M. L. Myrick, “The contribution of dipicolinic acid and calcium dipicolinate in the mid-infrared absorbance of Bacillus subtilis studied by FT-IR reflectance microspectroscopy,” Microspectroscopy (to be published).

Manoharan, R.

McCormick, S. A.

Milhaud, P.

G. Balassa, P. Milhaud, E. Raulet, M. T. Silva, J. C. Sousa, “A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores,” J. Gen. Microbiol. 110, 365–379 (1979).
[CrossRef] [PubMed]

Minko, G.

Mortelmans, K.

Murrell, W. G.

G. R. Germaine, W. G. Murrell, “Effect of dipicolinic acid on the ultraviolet radiation resistance of Bacillus cereus spores,” Photochem. Photobiol. 17, 145–154 (1973).
[CrossRef] [PubMed]

W. G. Murrell, “The biochemistry of the bacterial endospore,” Adv. Microbiol. Physiol. 1, 133–251 (1967).
[CrossRef]

W. G. Murrell, “Chemical composition of spores and spore structures,” in The Bacterial Spores, G. W. Gould, A. Hurst, eds. (Academic, London, 1969), pp. 215–273.

Myrick, M. L.

D. L. Perkins, C. R. Lovel, B. V. Bronk, B. Setlow, P. Setlow, M. L. Myrick, “The contribution of dipicolinic acid and calcium dipicolinate in the mid-infrared absorbance of Bacillus subtilis studied by FT-IR reflectance microspectroscopy,” Microspectroscopy (to be published).

Nelson, W. H.

Nudelman, R.

R. Nudelman, B. V. Bronk, S. Efrima, “Fluorescence emission derived from dipicolinic acid, its sodium, and its calcium salts,” Appl. Spectrosc. 54, 445–449 (2000).
[CrossRef]

B. V. Bronk, A. Shoaibi, R. Nudelman, A. Akinyemi, “Physical perturbation for fluorescent characterization of microorganism particles,” in Chemical and Biological Sensing, P. J. Gardner, ed., Proc. SPIE4036, 169–180 (2000).
[CrossRef]

R. Nudelman, N. Feay, M. Hirsch, S. Efrima, B. Bronk, “Fluorescence of dipicolinic acid as a possible component of the observed UV emission spectra of bacterial spores,” in Air Monitoring and Detection of Chemical and Biological Agents, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3533, 190–195 (1998).
[CrossRef]

Ohe, M.

H. Shibata, S. Yamashita, M. Ohe, I. Tani, “Laser Raman spectroscopy of lyophilized bacterial spores,” Microbiol. Immunol. 30, 307–313 (1986).
[CrossRef] [PubMed]

Perkins, D. L.

D. L. Perkins, C. R. Lovel, B. V. Bronk, B. Setlow, P. Setlow, M. L. Myrick, “The contribution of dipicolinic acid and calcium dipicolinate in the mid-infrared absorbance of Bacillus subtilis studied by FT-IR reflectance microspectroscopy,” Microspectroscopy (to be published).

Powell, J. F.

J. F. Powell, “Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium,” Biochem. J. 54, 210–211 (1953).
[PubMed]

Raulet, E.

G. Balassa, P. Milhaud, E. Raulet, M. T. Silva, J. C. Sousa, “A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores,” J. Gen. Microbiol. 110, 365–379 (1979).
[CrossRef] [PubMed]

Reinisch, L.

Rosen, R. B.

Sacks, L. E.

G. F. Bailey, S. Karp, L. E. Sacks, “Ultraviolet-absorption spectra of dry bacterial spores,” J. Bacteriol. 89, 984–987 (1965).
[PubMed]

Savage, H. W.

Setlow, B.

D. L. Perkins, C. R. Lovel, B. V. Bronk, B. Setlow, P. Setlow, M. L. Myrick, “The contribution of dipicolinic acid and calcium dipicolinate in the mid-infrared absorbance of Bacillus subtilis studied by FT-IR reflectance microspectroscopy,” Microspectroscopy (to be published).

Setlow, P.

D. L. Perkins, C. R. Lovel, B. V. Bronk, B. Setlow, P. Setlow, M. L. Myrick, “The contribution of dipicolinic acid and calcium dipicolinate in the mid-infrared absorbance of Bacillus subtilis studied by FT-IR reflectance microspectroscopy,” Microspectroscopy (to be published).

Shah, M.

Shibata, H.

H. Shibata, S. Yamashita, M. Ohe, I. Tani, “Laser Raman spectroscopy of lyophilized bacterial spores,” Microbiol. Immunol. 30, 307–313 (1986).
[CrossRef] [PubMed]

Shoaibi, A.

B. V. Bronk, A. Shoaibi, R. Nudelman, A. Akinyemi, “Physical perturbation for fluorescent characterization of microorganism particles,” in Chemical and Biological Sensing, P. J. Gardner, ed., Proc. SPIE4036, 169–180 (2000).
[CrossRef]

Silva, M. T.

G. Balassa, P. Milhaud, E. Raulet, M. T. Silva, J. C. Sousa, “A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores,” J. Gen. Microbiol. 110, 365–379 (1979).
[CrossRef] [PubMed]

Sousa, J. C.

G. Balassa, P. Milhaud, E. Raulet, M. T. Silva, J. C. Sousa, “A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores,” J. Gen. Microbiol. 110, 365–379 (1979).
[CrossRef] [PubMed]

Sperry, J. F.

Strahs, G.

G. Strahs, R. E. Dickerson, “The crystal structure of calcium dipicolinate trihydrate (a bacterial spore metabolite),” Acta Crystallogr. Sect. B 24, 571–578 (1968).
[CrossRef]

Swartz, B.

Tani, I.

H. Shibata, S. Yamashita, M. Ohe, I. Tani, “Laser Raman spectroscopy of lyophilized bacterial spores,” Microbiol. Immunol. 30, 307–313 (1986).
[CrossRef] [PubMed]

Warth, A. D.

A. D. Warth, “Determination of dipicolinic acid in bacterial spores by derivative spectroscopy,” Anal. Biochem. 130, 502–505 (1983).
[CrossRef] [PubMed]

Will, D. V.

Yamashita, S.

H. Shibata, S. Yamashita, M. Ohe, I. Tani, “Laser Raman spectroscopy of lyophilized bacterial spores,” Microbiol. Immunol. 30, 307–313 (1986).
[CrossRef] [PubMed]

Acta Crystallogr. Sect. B (1)

G. Strahs, R. E. Dickerson, “The crystal structure of calcium dipicolinate trihydrate (a bacterial spore metabolite),” Acta Crystallogr. Sect. B 24, 571–578 (1968).
[CrossRef]

Adv. Microbiol. Physiol. (2)

W. G. Murrell, “The biochemistry of the bacterial endospore,” Adv. Microbiol. Physiol. 1, 133–251 (1967).
[CrossRef]

G. W. Gould, G. J. Dring, “Mechanisms of spore heat resistance,” Adv. Microbiol. Physiol. 11, 137–164 (1974).
[CrossRef]

Anal. Biochem. (2)

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
[CrossRef] [PubMed]

A. D. Warth, “Determination of dipicolinic acid in bacterial spores by derivative spectroscopy,” Anal. Biochem. 130, 502–505 (1983).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (2)

Biochem. J. (1)

J. F. Powell, “Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium,” Biochem. J. 54, 210–211 (1953).
[PubMed]

Can. J. Microbiol. (1)

R. S. Hanson, M. V. Curry, J. V. Garner, H. O. Halvorson, “Mutants of Bacillus cereus strain T that produce thermoresistant spores lacking dipicolinate and have low levels of calcium,” Can. J. Microbiol. 18, 1139–1143 (1972).
[CrossRef] [PubMed]

J. Bacteriol. (2)

P. E. Berg, N. Grecz, “Relationship of dipicolinic acid content in spores of Bacillus cereus T to ultraviolet and gamma radiation resistance,” J. Bacteriol. 103, 517–519 (1970).
[PubMed]

G. F. Bailey, S. Karp, L. E. Sacks, “Ultraviolet-absorption spectra of dry bacterial spores,” J. Bacteriol. 89, 984–987 (1965).
[PubMed]

J. Gen. Microbiol. (2)

G. Balassa, P. Milhaud, E. Raulet, M. T. Silva, J. C. Sousa, “A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores,” J. Gen. Microbiol. 110, 365–379 (1979).
[CrossRef] [PubMed]

G. J. Dring, G. W. Gould, “Sequence of events during rapid germination of Bacillus cereus,” J. Gen. Microbiol. 65, 101–104 (1971).
[CrossRef] [PubMed]

Microbiol. Immunol. (1)

H. Shibata, S. Yamashita, M. Ohe, I. Tani, “Laser Raman spectroscopy of lyophilized bacterial spores,” Microbiol. Immunol. 30, 307–313 (1986).
[CrossRef] [PubMed]

Nature (London) (2)

G. W. Gould, G. J. Dring, “Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex,” Nature (London) 258, 402–405 (1975).
[CrossRef]

B. D. Church, H. Halvorson, “Dependence of the heat resistance of the bacterial endospores on their dipicolinic acid content,” Nature (London) 183, 124–125 (1959).
[CrossRef]

Photochem. Photobiol. (1)

G. R. Germaine, W. G. Murrell, “Effect of dipicolinic acid on the ultraviolet radiation resistance of Bacillus cereus spores,” Photochem. Photobiol. 17, 145–154 (1973).
[CrossRef] [PubMed]

Other (6)

D. L. Perkins, C. R. Lovel, B. V. Bronk, B. Setlow, P. Setlow, M. L. Myrick, “The contribution of dipicolinic acid and calcium dipicolinate in the mid-infrared absorbance of Bacillus subtilis studied by FT-IR reflectance microspectroscopy,” Microspectroscopy (to be published).

G. W. Gould, “Germination,” in The Bacterial Spore, G. W. Gould, A. Hurst, eds. (Academic, New York, 1969), pp. 397–444.

W. G. Murrell, “Chemical composition of spores and spore structures,” in The Bacterial Spores, G. W. Gould, A. Hurst, eds. (Academic, London, 1969), pp. 215–273.

M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Good-heart, Fundamentals of Microbiology, 9th ed. (Saunders, Philadelphia, Pa., 1974).

B. V. Bronk, A. Shoaibi, R. Nudelman, A. Akinyemi, “Physical perturbation for fluorescent characterization of microorganism particles,” in Chemical and Biological Sensing, P. J. Gardner, ed., Proc. SPIE4036, 169–180 (2000).
[CrossRef]

R. Nudelman, N. Feay, M. Hirsch, S. Efrima, B. Bronk, “Fluorescence of dipicolinic acid as a possible component of the observed UV emission spectra of bacterial spores,” in Air Monitoring and Detection of Chemical and Biological Agents, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3533, 190–195 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(A) Luminescence spectrum of a freshly prepared DPA solution. The arrow points to the Raman scattering from the water. (B) Fluorescence spectrum of the same DPA solution after UV exposure. The excitation was stepped every 10 nm from 200 to 600 nm. The intensity in each 2-D plot is equally divided by 15 contour lines with the unnormalized peak intensity for each sample controlling the maximum. The greatest intensity is dark and the least intensity is white.

Fig. 2
Fig. 2

Absorption spectra of DPA before exposure to UV light (filled circles) and DPA after exposure to ~100 J/cm2 of UV light (open circles). Also shown is the absorption of CaDPA before exposure to UV light (dashed curve) and after exposure to ~100 J/cm2 of UV light (solid curve). All samples were solutions measured in a 1-cm quartz cuvette. The same sample was measured before and after exposure. O.D., optical density.

Fig. 3
Fig. 3

(A) Fluorescence spectrum of UV-exposed DPA as a wet paste on filter paper. (B) Fluorescence spectrum of UV-exposed DPA as dry crystals on filter paper. The sample preparations are described in the text. The excitation was stepped every 10 nm from 200 to 600 nm. The intensity is equally divided by 15 contour lines. The greatest intensity is dark and the least intensity is white.

Fig. 4
Fig. 4

(A) Fluorescence spectrum of dry DPA without UV exposure on filter paper. (B) Fluorescence spectrum of UV-exposed dry DPA crystals on filter paper. The excitation was stepped every 10 nm from 200 to 600 nm. The intensity is equally divided by 15 contour lines. The greatest intensity is dark and the least intensity is white. The maximum intensity in (B) is twice as large as the maximum intensity in (A).

Fig. 5
Fig. 5

(A) Luminescence spectrum of a freshly prepared CaDPA solution. The arrow points to the Raman scattering from the water. (B) Fluorescence spectrum of the same CaDPA solution after UV exposure. The excitation was stepped every 10 nm from 200 to 600 nm. The intensity is equally divided by 15 contour lines. The greatest intensity is dark and the least intensity is white.

Fig. 6
Fig. 6

(A) Fluorescence spectrum of UV-exposed CaDPA as a wet paste on filter paper. (B) Fluorescence spectrum of UV-exposed CaDPA as dry crystals on filter paper. The sample preparations are described in the text. The excitation was stepped every 10 nm from 200 to 600 nm. The intensity is equally divided by 15 contour lines. The greatest intensity is dark and the least intensity is white.

Fig. 7
Fig. 7

(A) Fluorescence spectrum of dry CaDPA without UV exposure on filter paper. (B) Fluorescence spectrum of UV-exposed dry CaDPA crystals on filter paper. The excitation was stepped every 10 nm from 200 to 600 nm. The intensity is equally divided by 15 contour lines. The greatest intensity is dark and the least intensity is white. The maximum intensity in (B) is 1.5 times larger than the maximum intensity in (A).

Metrics