Abstract

A 3 × 3 micromirror array has been designed and successfully fabricated by multilayer silicon surface micromaching technology. It is composed of a bottom electrode, a supporting part, and a mirror plate and can modulate both phase and amplitude of incident light. The maximum deflection length along the vertical direction of the mirror plate is 2 μm, and the rotation angles about the Y and X axes are ×2.3° and ±1.45°, respectively; one can obtain an even larger deflection by simply increasing the thickness of the sacrificial layers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” in Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications, W. Bailey, M. E. Motamedi, F. C. Luo, eds., Proc. SPIE2641, 64–75 (1995).
    [CrossRef]
  2. M. H. Kiang, O. Solgaard, K. Y. Lau, R. S. Muller, “Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
    [CrossRef]
  3. H. Toshiyoshi, H. Fujita, “Electrostatic microtorsion mirrors for an optical switch matrix,” J. Microelectromech. Syst. 5, 231–237 (1996).
    [CrossRef]
  4. R. A. Miller, Y. C. Tai, G. Xu, “An electromagnetic MEMS 2 × 22 fiber optic bypass switch,” presented at the IEEE Ninth International Conference on Solid-State Sensors and Actuators (Transducers 97), Chicago, Ill., 16–19 June 1997.
  5. J. E. Pearson, S. Hansen, “Experimental studies of a deformable-mirror adaptive optical system,” J. Opt. Soc. Am. 67, 325–333 (1977).
    [CrossRef]
  6. M. Horenstein, T. Bifano, S. Pappas, J. Perreault, R. Krishnamoorthyl, “Real-time optical correction using electrostatically actuated MEMS devices,” J. Electrost. 46, 91–101 (1999).
    [CrossRef]
  7. T. Bifano, J. Perreault, R. Krishnamoorthyl, M. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
    [CrossRef]
  8. Y. H. Min, Y. K. Kim, “Modeling, design, fabrication and measurement of a single layer polysilicon micromirror with initial curvature compensation,” Sens. Actuators 78, 8–17 (1999).
    [CrossRef]
  9. S. W. Chung, J. W. Shin, Y. K. Kim, Y. H. Min, “Characteristics measurements of the 100 × 100 fabricated micromirror,” in Advanced Applications of Lasers in Materials Processing, IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 3–4.

1999 (3)

M. Horenstein, T. Bifano, S. Pappas, J. Perreault, R. Krishnamoorthyl, “Real-time optical correction using electrostatically actuated MEMS devices,” J. Electrost. 46, 91–101 (1999).
[CrossRef]

T. Bifano, J. Perreault, R. Krishnamoorthyl, M. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Y. H. Min, Y. K. Kim, “Modeling, design, fabrication and measurement of a single layer polysilicon micromirror with initial curvature compensation,” Sens. Actuators 78, 8–17 (1999).
[CrossRef]

1998 (1)

M. H. Kiang, O. Solgaard, K. Y. Lau, R. S. Muller, “Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

1996 (1)

H. Toshiyoshi, H. Fujita, “Electrostatic microtorsion mirrors for an optical switch matrix,” J. Microelectromech. Syst. 5, 231–237 (1996).
[CrossRef]

1977 (1)

Bifano, T.

M. Horenstein, T. Bifano, S. Pappas, J. Perreault, R. Krishnamoorthyl, “Real-time optical correction using electrostatically actuated MEMS devices,” J. Electrost. 46, 91–101 (1999).
[CrossRef]

T. Bifano, J. Perreault, R. Krishnamoorthyl, M. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Chung, S. W.

S. W. Chung, J. W. Shin, Y. K. Kim, Y. H. Min, “Characteristics measurements of the 100 × 100 fabricated micromirror,” in Advanced Applications of Lasers in Materials Processing, IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 3–4.

Fujita, H.

H. Toshiyoshi, H. Fujita, “Electrostatic microtorsion mirrors for an optical switch matrix,” J. Microelectromech. Syst. 5, 231–237 (1996).
[CrossRef]

Hansen, S.

Horenstein, M.

M. Horenstein, T. Bifano, S. Pappas, J. Perreault, R. Krishnamoorthyl, “Real-time optical correction using electrostatically actuated MEMS devices,” J. Electrost. 46, 91–101 (1999).
[CrossRef]

T. Bifano, J. Perreault, R. Krishnamoorthyl, M. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Kiang, M. H.

M. H. Kiang, O. Solgaard, K. Y. Lau, R. S. Muller, “Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

Kim, Y. K.

Y. H. Min, Y. K. Kim, “Modeling, design, fabrication and measurement of a single layer polysilicon micromirror with initial curvature compensation,” Sens. Actuators 78, 8–17 (1999).
[CrossRef]

S. W. Chung, J. W. Shin, Y. K. Kim, Y. H. Min, “Characteristics measurements of the 100 × 100 fabricated micromirror,” in Advanced Applications of Lasers in Materials Processing, IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 3–4.

Krishnamoorthyl, R.

M. Horenstein, T. Bifano, S. Pappas, J. Perreault, R. Krishnamoorthyl, “Real-time optical correction using electrostatically actuated MEMS devices,” J. Electrost. 46, 91–101 (1999).
[CrossRef]

T. Bifano, J. Perreault, R. Krishnamoorthyl, M. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Lau, K. Y.

M. H. Kiang, O. Solgaard, K. Y. Lau, R. S. Muller, “Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

Miller, R. A.

R. A. Miller, Y. C. Tai, G. Xu, “An electromagnetic MEMS 2 × 22 fiber optic bypass switch,” presented at the IEEE Ninth International Conference on Solid-State Sensors and Actuators (Transducers 97), Chicago, Ill., 16–19 June 1997.

Min, Y. H.

Y. H. Min, Y. K. Kim, “Modeling, design, fabrication and measurement of a single layer polysilicon micromirror with initial curvature compensation,” Sens. Actuators 78, 8–17 (1999).
[CrossRef]

S. W. Chung, J. W. Shin, Y. K. Kim, Y. H. Min, “Characteristics measurements of the 100 × 100 fabricated micromirror,” in Advanced Applications of Lasers in Materials Processing, IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 3–4.

Muller, R. S.

M. H. Kiang, O. Solgaard, K. Y. Lau, R. S. Muller, “Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

Pappas, S.

M. Horenstein, T. Bifano, S. Pappas, J. Perreault, R. Krishnamoorthyl, “Real-time optical correction using electrostatically actuated MEMS devices,” J. Electrost. 46, 91–101 (1999).
[CrossRef]

Pearson, J. E.

Perreault, J.

M. Horenstein, T. Bifano, S. Pappas, J. Perreault, R. Krishnamoorthyl, “Real-time optical correction using electrostatically actuated MEMS devices,” J. Electrost. 46, 91–101 (1999).
[CrossRef]

T. Bifano, J. Perreault, R. Krishnamoorthyl, M. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Shin, J. W.

S. W. Chung, J. W. Shin, Y. K. Kim, Y. H. Min, “Characteristics measurements of the 100 × 100 fabricated micromirror,” in Advanced Applications of Lasers in Materials Processing, IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 3–4.

Solgaard, O.

M. H. Kiang, O. Solgaard, K. Y. Lau, R. S. Muller, “Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

Tai, Y. C.

R. A. Miller, Y. C. Tai, G. Xu, “An electromagnetic MEMS 2 × 22 fiber optic bypass switch,” presented at the IEEE Ninth International Conference on Solid-State Sensors and Actuators (Transducers 97), Chicago, Ill., 16–19 June 1997.

Toshiyoshi, H.

H. Toshiyoshi, H. Fujita, “Electrostatic microtorsion mirrors for an optical switch matrix,” J. Microelectromech. Syst. 5, 231–237 (1996).
[CrossRef]

Xu, G.

R. A. Miller, Y. C. Tai, G. Xu, “An electromagnetic MEMS 2 × 22 fiber optic bypass switch,” presented at the IEEE Ninth International Conference on Solid-State Sensors and Actuators (Transducers 97), Chicago, Ill., 16–19 June 1997.

Younse, J. M.

J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” in Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications, W. Bailey, M. E. Motamedi, F. C. Luo, eds., Proc. SPIE2641, 64–75 (1995).
[CrossRef]

J. Electrost. (1)

M. Horenstein, T. Bifano, S. Pappas, J. Perreault, R. Krishnamoorthyl, “Real-time optical correction using electrostatically actuated MEMS devices,” J. Electrost. 46, 91–101 (1999).
[CrossRef]

J. Microelectromech. Syst. (2)

M. H. Kiang, O. Solgaard, K. Y. Lau, R. S. Muller, “Electrostatic comb drive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

H. Toshiyoshi, H. Fujita, “Electrostatic microtorsion mirrors for an optical switch matrix,” J. Microelectromech. Syst. 5, 231–237 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Sel. Top. Quantum Electron. (1)

T. Bifano, J. Perreault, R. Krishnamoorthyl, M. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Sens. Actuators (1)

Y. H. Min, Y. K. Kim, “Modeling, design, fabrication and measurement of a single layer polysilicon micromirror with initial curvature compensation,” Sens. Actuators 78, 8–17 (1999).
[CrossRef]

Other (3)

S. W. Chung, J. W. Shin, Y. K. Kim, Y. H. Min, “Characteristics measurements of the 100 × 100 fabricated micromirror,” in Advanced Applications of Lasers in Materials Processing, IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 3–4.

J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” in Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications, W. Bailey, M. E. Motamedi, F. C. Luo, eds., Proc. SPIE2641, 64–75 (1995).
[CrossRef]

R. A. Miller, Y. C. Tai, G. Xu, “An electromagnetic MEMS 2 × 22 fiber optic bypass switch,” presented at the IEEE Ninth International Conference on Solid-State Sensors and Actuators (Transducers 97), Chicago, Ill., 16–19 June 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the micromirror.

Fig. 2
Fig. 2

Configurations of various components of the micromirror.

Fig. 3
Fig. 3

Schematic of a T-type beam.

Fig. 4
Fig. 4

Fabrication of a micromirror: (a) bottom electrode patterning, (b) first sacrificial layer deposition and post hole etching by CF4, (c) polysilicon deposition and patterning for the support beam, (d) second sacrificial layer deposition and post hole etching, (e) polysilicon deposition and patterning for the mirror plate, (f) reflective layer and sacrificial layer removal.

Fig. 5
Fig. 5

Photograph of a micromirror.

Fig. 6
Fig. 6

Schematic of the optical measurement system.

Fig. 7
Fig. 7

Deflection length as a function of applied voltage.

Fig. 8
Fig. 8

Rotation angle as a function of applied voltage.

Tables (1)

Tables Icon

Table 1 Dimensions of the Designed Structure

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k = E b h 3 2 l 1 3 + l 2 3 ,
k ϕ x = E b h 3 2 l 1 + ( l 2 3 / l 1 2 ) ,             k ϕ y = b h 3 ( l 2 / E ) + ( l 1 / 2 β G ) ,

Metrics